
MICROPROCESSORS & MICROCONTROLLERS 

LECTURE NOTES 

B.TECH 

 
Prepared by: 

Mrs.G.Jyothi, Assistant Professor  
 
 

 
 
 

 
 
 

 
 
 

Department of Electronics & Communication Engineering 

MALLA REDDY ENGINEERING COLLEGE 
(Autonomous) 

(Approved by AICTE & Affiliated to JNTUH) 
Maisammaguda, Dhulapally (Post via Kompally), Secunderabad-500 100 

 



 

 
 

2018-19 Onwards     MALLA REDDY ENGINEERING COLLEGE 

(MR-18)                                             (Autonomous) 

Code: 80414                                     B.Tech. V Semester                             L T P 

           Credits: 3 3 - - 

 

     

MICROPROCESSORS AND MICROCONTROLLERS 

 

Pre-Requisites: Digital Electronics. 

 

Course Objectives: This course provides the students to understand operation and programming 

of 8085 Microprocessor, develops real time applications using 8086 processor, understand the 

basic concepts of 8051 Microcontroller and interfacing with I/O devices. 

 

MODULE I: 8085 Architecture         [8 

Periods] 

Introduction to Microprocessors, Architecture of 8085, Pin Configuration and Function, internal 

register & flag register, Generation of Control Signals: Bus Timings: Demultiplexing of address/ 

data bus; Fetch Cycle, Execute Cycle, Instruction Cycle, Machine cycles, T-states, memory 

interfacing. 

 

MODULE II: Instruction Set and Programming with 8085                                          [10 

Periods] 

Instruction for Data Transfer, Arithmetic and Logical Operations, Branching Operation, Machine 

Cycle Concept, Addressing Modes, Instructions Format, Stacks, Subroutine and Related 

Instructions, Elementary Concepts of Assemblers, Assembler Directives, Looping and Counting, 

Software Counters with Time Delays, Simple Programs using Instruction Set of 8085, 

Debugging, Programs Involving Subroutines, Programs for Code Conversion e.g. BCD to 

Binary, Binary to BCD, Binary to Seven-Segment LED Display.Binary to ASCII, ASCII to 

Binary, Program for Addition Subtraction, Programs for Multiplication and Division of 

Unsigned Binary Numbers. 

 

MODULE III: 8086 Architecture               [09 

Periods] 

A:8086 Architecture-Functional diagram, Register Organization, Memory 

Segmentation,Programming Model, Memory addresses, Physical Memory Organization, 

Architecture of 8086, Signal descriptions of 8086- Common Function Signals, Timing diagrams, 

Interrupts of 8086. 

B: Interfacing I/O Devices: Interfacing of 8086 with Memory, key board and display,A/D and 

D/A. 

 

MODULE IV: Introduction to Microcontroller                                                            [10 

Periods] 

A brief History of Microcontrollers, Harvard Vs Von-Neumann Architecture; RISC VsCISC, 

Classification of MCS-51family based on their features (8051,8052, 8031, 8751,AT89C51), Pin 

configuration of 8051. 

8051 Microcontroller Architecture and Instruction Set: Registers of 8051, Inbuilt RAM, 

Register banks, stack, on-chip and external program code memory ROM, power reset and 

clocking circuits, I/O port structure, addressing modes, Instruction set and programming. 

 

MODULE V: 8051 Real Time Control                                                                           [11 

Periods] 

Counter/Timer and Interrupts of 8051: Introduction, Registers of timer/counter, Different 

modes of timer/counter, Timer/counter programming, Interrupt Vs Polling, Types of interrupts 

and vector addresses, register used for interrupts initialization, programming of external 



interrupts, Timer interrupts. 

Asynchronous Serial Communication and Programming: Introduction to serial 

communication, Programming the Serial Communication Interrupts, RS232 standard,RS422 

Standard, RS-485 standard, Max 232/233 Driver. 

Interfacing with 8051: Interfacing and programming of: ADC (0804,0808/0809,0848) & 

DAC(0808), dc motor, stepper motor, Relays, LED and Seven segment display, LCD, 4x4 

keyboard matrix. 

 

Text Books: 

1. Ramesh Gaonkar, “Microprocessor Architecture, Programing and Application with 8085” , 

Penram, 5th Edition, 2002. 

2. A.K.Ray, “Advanced Micro processors and Peripherals” 3rd Tata McGraw-Hill,Edition. 

3. Mazidi, Mazidi&McKinlay, “The 8051 Microcontroller and Embedded Systems using 

Assembly and C” 2nd Edition,PHI. 

 

Reference Books: 

1. D. V Hall TMH, “Microprocessors and Interfacing” 2nd Edition, 2006 

2. K. Uday Kumar, B.S. Umashankar, “The 8085 Microprocessor: Architecture, programming 

and Interfacing” Pearson, 2008. 

3. Liu and Gibson, “Micro Computer System 8086/8088 Family Architecture, Programming and 

Design” PHI, 2nd Edition 

4. Kenneth. J. Ayala, Cengage Learning, “The 8051 Microcontroller” 3rd Edition, 2004. 

 

E-Resources: 

1. https://www.tutorialspoint.com › Microprocessor › Microprocessor – 8085 Architecture 

2. http://www.cpu-world.com/CPUs/8086/ 

3. https://www.journals.elsevier.com/microprocessors-and-microsystems/ 

4. http://rtcmagazine.com/technologies/view/Microcontrollers 

5. http://nptel.ac.in/courses/106108100/ 

6. http://nptel.ac.in/courses/108107029/ 

7. nptel.ac.in/courses/106108100/ 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Microprocessor and Microcontrollers 
 

     Module  I 

        8085 Architecture 

 
INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER 

ARCHITECTURE 
 

A microprocessor is a programmable electronics chip that has computing and decision 

making capabilities similar to central processing unit of a computer. Any microprocessor- 

based systems having limited number of resources are called microcomputers. Nowadays, 

microprocessor can be seen in almost all types of electronics devices like mobile phones, 

printers, washing machines etc. 

 

 
Fig.1 Microprocessor-based system 

 

• Address Bus: It carries the address, which is a unique binary pattern used to identify  

a memory location or an I/O port. For example, an eight bit address bus has eight lines 

and thus it can address 28 = 256 different locations. The locations in hexadecimal 

format can be written as 00H – FFH. 

• Data Bus: The data bus is used to transfer data between memory and processor or 

between I/O device and processor. For example, an 8-bit processor will generally 

have an 8-bit data bus and a 16-bit processor will have 16-bit data bus. 

• Control Bus: The control bus carry control signals, which consists of signals for 

selection of memory or I/O device from the given address, direction of data transfer 

and synchronization of data transfer in case of slow devices. 

 

A typical microprocessor consists of arithmetic and logic unit (ALU) in association with 

control unit to process the instruction execution. Almost all the microprocessors are based on 

the principle of store-program concept. In store-program concept, programs or instructions 

are sequentially stored in the memory locations that are to be executed. To do any task using a 

microprocessor, it is to be programmed by the user. So the programmer must have idea about 

its internal resources, features and supported instructions. Each microprocessor has a set of 

instructions, a list which is provided by the microprocessor manufacturer. The instruction set 

of a microprocessor is provided in two forms: binary machine code and mnemonics. 

Microprocessor communicates and operates in binary numbers 0 and 1. The set of instructions 

in the form of binary patterns is called a machine language and it is difficult for us to 

understand. Therefore, the binary patterns are given abbreviated names, called mnemonics, 

which forms the assembly language. The conversion of assembly-level language into binary 

machine-level language is done by using an application called assembler. 

 



Microprocessor and Microcontrollers 
 

Evolution of Microprocessors 

4-bit Microprocessors 

The first microprocessor was introduced in 1971 by Intel Corp. It was named Intel 

4004 as it was a 4 bit processor. It was a processor on a single chip. It could perform simple 

arithmetic and logic operations such as addition, subtraction, boolean AND and boolean OR. 

It had a control unit capable of performing control functions like fetching an instruction from 

memory, decoding it, and generating control pulses to execute it. It was able to operate on 4 

bits of data at a time. This first microprocessor was quite a success in industry. Soon other 

microprocessors were also introduced. Intel introduced the enhanced version of 4004, the 

4040. 

8-bit Microprocessors 

The first 8 bit microprocessor which could perform arithmetic and logic operations on 

8 bit words was introduced in 1973 again by Intel. This was Intel 8008 and was later followed 

by an improved version, Intel 8088. Some other 8 bit processors are Zilog-80 and Motorola 

M6800. 

16-bit Microprocessors 

The 8-bit processors were followed by 16 bit processors. They are Intel 8086 and 80286. 

32-bit Microprocessors 

The 32 bit microprocessors were introduced by several companies but the most popular 

one is Intel 80386. 

Pentium Series 

Instead of 80586, Intel came out with a new processor namely Pentium processor. Its 

performance is closer to RISC performance. Pentium was followed by Pentium Pro CPU. 

Pentium Pro allows multiple CPUs in a single system in order to achieve multiprocessing. 

The MMX extension was added to Pentium Pro and the result was Pentiuum II. 

 

The Pentium III provided high performance floating point operations for certain types of 

computations by using the SIMD extensions to the instruction set. These new instructions 

makes the Pentium III faster than high-end RISC CPUs.



Microprocessor and Microcontrollers 
 

ARCHITECTURE OF 8085 MICROPROCESSOR 

 
The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package and 

uses +5 V for power. It can run at a maximum frequency of 3 MHz. Its data bus width is 8-bit 

and address bus width is 16-bit, thus it can address 216 = 64 KB of memory. The internal 

architecture of 8085 is shown is Fig. 2. 

 
 

 

 

Fig. 2 Internal Architecture of 8085 

Arithmetic and Logic Unit 

The ALU performs the arithmetic and logical operations such as Addition (ADD), 

Subtraction (SUB), AND, OR etc. It uses data from memory and from Accumulator to 

perform operations. The results of the arithmetic and logical operations are stored in the 

accumulator. 

Registers 

The 8085 includes six registers, one accumulator and one flag register, as shown in 

Fig. 3. In addition, it has two 16-bit registers: stack pointer and program counter. They are 

briefly described as follows. 

The 8085 has six general-purpose registers to store 8-bit data; these are identified as 

B, C, D, E, H and L. they can be combined as register pairs - BC, DE and HL to perform 

some 16-bit operations. The programmer can use these registers to store or copy data into the 

register by using data copy instructions. 

 
 



Microprocessor and Microcontrollers 
 

 

Fig. 3 Register organization 

Accumulator 

The accumulator is an 8-bit register that is a part of ALU. This register is used to store 

8-bit data and to perform arithmetic and logical operations. The result of an operation is stored 

in the accumulator. The accumulator is also identified as register A. 

Flag register 

The ALU includes five flip-flops, which are set or reset after an operation according to 

data condition of the result in the accumulator and other registers. They are called Zero (Z), 

Carry (CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags. Their bit positions in the flag 

register are shown in Fig. 4. The microprocessor uses these flags to test data conditions. 

 

 

 

Fig. 4 Flag register 

Program Counter (PC) 

This 16-bit register deals with sequencing the execution of instructions. This register is 

a memory pointer. The microprocessor uses this register to sequence the execution of the 

instructions. The function of the program counter is to point to the memory address from 

which the next byte is to be fetched. When a byte is being fetched, the program counter is 

automatically incremented by one to point to the next memory location. 

Stack Pointer (SP) 

The stack pointer is also a 16-bit register, used as a memory pointer. It points to a 

memory location in R/W memory, called stack. The beginning of the stack is defined by 

loading 16- bit address in the stack pointer. 

Instruction Register/Decoder 

It is an 8-bit register that temporarily stores the current instruction of a program. Latest 

instruction sent here from memory prior to execution. Decoder then takes instruction and 

decodes or interprets the instruction. Decoded instruction then passed to next stage. 

 



Microprocessor and Microcontrollers 
 

Control Unit 

Generates signals on data bus, address bus and control bus within microprocessor to carry 

out the instruction, which has been decoded. Typical buses and their timing are described as 

follows: 

• Data Bus: Data bus carries data in binary form between microprocessor and other 

external units such as memory. It is used to transmit data i.e. information, results of 

arithmetic etc between memory and the microprocessor. Data bus is bidirectional in 

nature. The data bus width of 8085 microprocessor is 8-bit. 

• Address Bus: The address bus carries addresses and is one way bus from 

microprocessor to the memory or other devices. 8085 microprocessor contain 16-bit 

address bus and are generally identified as A0 - A15. The higher order address lines 

(A8 – A15) are unidirectional and the lower order lines (A0 – A7) are multiplexed 

(time-shared) with the eight data bits (D0 – D7) and hence, they are bidirectional. 

• Control Bus: Control bus are various lines which have specific functions for 

coordinating and controlling microprocessor operations. The control bus carries 

control signals partly unidirectional and partly bidirectional. The following control 

and status signals are used by 8085 processor: 

• ALE (output): Address Latch Enable is a pulse that is provided when an 

address appears on the AD0 – AD7 lines, after which it becomes 0. 

• RD (active low output): The Read signal indicates that data are being read 

from the selected I/O or memory device and that they are available on the data 

bus. 

• WR (active low output): The Write signal indicates that data on the data bus 

are to be written into a selected memory or I/O location. 

• IO/M (output): It is a signal that distinguished between a memory operation 

and an I/O operation. When IO/M = 0 it is a memory operation and IO/M = 1 

it is an I/O operation. 

•  S1 and S0 (output): These are status signals used to specify the type of 

operation being performed; they are listed in Table 1. 

 

Table 1 Status signals and associated operations 

 

S1 S0 States 

0 0 Halt 

0 1 Write 

1 0 Read 

1 1 Fetch 

 

2. Bus organization 

The schematic representation of the 8085 bus structure is as shown in Fig. 5. The 

microprocessor performs primarily four operations: 

 

• Memory Read: Reads data (or instruction) from memory. 

• Memory Write: Writes data (or instruction) into memory. 

• I/O Read: Accepts data from input device. 

• I/O Write: Sends data to output device. 

The 8085 processor performs these functions using address bus, data bus and control bus as 



Microprocessor and Microcontrollers 
 

shown in Fig. 5. 
 

 

 

Fig. 5 The 8085 bus structure 
 

8085 PIN DESCRIPTION 

Features: 

• It is an 8-bit microprocessor 

• Manufactured with N-MOS technology 

• 40 pin IC package 

• It has 16-bit address bus and thus has 216 = 64 KB addressing capability. 

• Operate with 3 MHz single-phase clock 

• +5 V single power supply 

 

The logic pin layout and signal groups of the 8085nmicroprocessor are shown in Fig. 6. All 

the signals are classified into six groups: 

• Address bus 

• Data bus 

• Control & status signals 

• Power supply and frequency signals 

• Externally initiated signals 

• Serial I/O signals 



Microprocessor and Microcontrollers 
 

 

 
 

 

Fig. 6 8085 microprocessor pin layout and signal groups 

Address and Data Buses: 

• A8 – A15 (output): Most significant eight bits of memory addresses and the eight bits of the I/O 

addresses. 

• AD0 – AD7 (input/output): Lower significant bits of memory addresses and the eight bits of the 

I/O addresses during first clock cycle. Behaves as data bus during third and fourth clock cycle. 

Control & Status Signals: 

• ALE: Address latch enable 

• RD : Read control signal. 

• WR : Write control signal. 

• IO/M, S1 and S0: Status signals. Power Supply & Clock Frequency: 

• Vcc: +5 V power supply 

• Vss: Ground reference 

• X1, X2: A crystal having frequency of 6 MHz is connected at these two pins 

• CLK: Clock output 

Externally Initiated and Interrupt Signals: 

• RESET IN: When the signal on this pin is low, the PC is set to 0 and the processor is reset. 

• RESET OUT: This signal indicates that the processor is being reset. The signal can be used to 

reset other devices. 

• READY: When this signal is low, the processor waits for an integral number of clock cycles until 



Microprocessor and Microcontrollers 
 

it goes high. 

• HOLD: This signal indicates that a peripheral like DMA (direct memory access) controller is 

requesting the use of address and data bus. 

• HLDA: This signal acknowledges the HOLD request. 

• INTR: Interrupt request is a general-purpose interrupt. 

• INTA: This is used to acknowledge an interrupt. 

• RST 7.5, RST 6.5, RST 5,5 – restart interrupt: These are vectored interrupts and have highest 

priority than INTR interrupt. 

• TRAP: This is a non-maskable interrupt and has the highest priority. 

Serial I/O Signals: 

• SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM instruction. 

• SOD: Serial output signal. Output SOD is set or reset by using SIM instruction. 

 

 

 

Generation of Control signals: 

The 8085 Microprocessor provides RD and WR signals to initiate read or write cycle. Because these Control 

Signals of 8085 are used both for reading/writing memory and for reading/writing an input device, it is 

necessary to generate separate read and write signals for memory and I/O device 

The 8085 provides IO/M signal to indicate whether the initiated cycle is for I/O device or 

for memory device. Using IO/M signal along with RD and WR, it is possible to generate separate four 

Control Signals of 8085 : 

 

 

                         Fig.  shows the circuit which generates MEMR, MEMW, IOR and IOW signals. 

                                                                     

 

We know that for OR gate, when both the inputs are low then only output is low. 

https://www.eeeonline.org/


Microprocessor and Microcontrollers 
 

 

 

The signal IO/M goes low for memory operation. This signal is logically ORed with RD and WR to get 

MEMR and MEMW signals. When both RD and IO/M signals go low, MEMR signal goes low. 

Similarly, when both WR and IO/M Signals go low, MEMW signal goes low. To generate IOR and 

IOW signals for I/O operation, IO/M signal is first inverted and then logically ORed with RD and WR 

signals. 

Same truth table can be implemented using 3:8 decoder as shown in Fig 

                                     

INSTRUCTION EXECUTION AND TIMING DIAGRAM: 

 

Each instruction in 8085 microprocessor consists of two part- operation code (opcode) and 

operand. The opcode is a command such as ADD and the operand is an object to be 

operated on, such as a byte or the content of a register. 

Instruction Cycle: The time taken by the processor to complete the execution of an 

instruction. An instruction cycle consists of one to six machine cycles. 

Machine Cycle: The time required to complete one operation; accessing either the memory 

or I/O device. A machine cycle consists of three to six T-states. 

T-State: Time corresponding to one clock period. It is the basic unit to calculate execution 

of instructions or programs in a processor. 

To execute a program, 8085 performs various operations as: 

 

• Opcode fetch 



Microprocessor and Microcontrollers 
 

• Operand fetch 

• Memory read/write 

• I/O read/write 

External communication functions are: 

 

• Memory read/write 

• I/O read/write 

• Interrupt request acknowledge 

Opcode Fetch Machine Cycle: 

It is the first step in the execution of any instruction. The timing diagram of this cycle is 

given in Fig. 7. 

The following points explain the various operations that take place and the signals that are 

changed during the execution of opcode fetch machine cycle: 

T1 clock cycle 

 

i. The content of PC is placed in the address bus; AD0 - AD7 lines contains lower bit 

address and A8 – A15 contains higher bit address. 

ii. IO/M signal is low indicating that a memory location is being accessed. S1 and S0 

also changed to the levels as indicated in Table 1. 

iii. ALE is high, indicates that multiplexed AD0 – AD7 act as lower order bus. 

 

T2 clock cycle 

 

i. Multiplexed address bus is now changed to data bus. 

ii. The RD signal is made low by the processor. This signal makes the memory device 

load the data bus with the contents of the location addressed by the processor. 

T3 clock cycle 

 

i. The opcode available on the data bus is read by the processor and moved to the 

instruction register. 

ii. The RD signal is deactivated by making it logic 1. 

 

T4 clock cycle 

 

i. The processor decode the instruction in the instruction register and generate the 

necessary control signals to execute the instruction. Based on the instruction further 

operations such as fetching, writing into memory etc takes place. 

 
 



Microprocessor and Microcontrollers 
 

 

Fig. 7 Timing diagram for opcode fetch cycle 
 

Memory Read Machine Cycle: 
 

The memory read cycle is executed by the processor to read a data byte from memory. The 

machine cycle is exactly same to opcode fetch except: a) It has three T-states b) The S0 

signal is set to 0. The timing diagram of   this cycle is given in fig 8  

 

                                            



Microprocessor and Microcontrollers 
 

Fig. 8 Timing diagram for memory read machine cycle 

 

 
Memory Write Machine Cycle: 

The memory write cycle is executed by the processor to write a data byte 

in a memory location. The processor takes three T-states and WR signal is made 

low. The  timing diagram of this cycle is given in Fig. 9. 

I/O Read Cycle: 

The I/O read cycle is executed by the processor to read a data byte from 

I/O port or from peripheral, which is I/O mapped in the system. The 8-bit port 

address is placed both in the lower and higher order address bus. The processor 

takes three T-states to execute this machine cycle. The timing diagram of this 

cycle is given in Fig. 10. 

 

 

 

 

 

 
 

Fig. 9 Timing diagram for memory write machine 
cycle 

 
 



Microprocessor and Microcontrollers 
 

 

Fig. 10 Timing diagram I/O read machine 

cycle 
 

I/O Write Cycle: 
 

The I/O write cycle is executed by the processor to write a data byte to I/O port 

or to a peripheral, which is I/O mapped in the system. The processor takes three 

T-states to execute this machine cycle. The timing diagram of this cycle is 

given in Fig. 11. 

 
 

 

Fig. 11 Timing diagram I/O write machine cycle 
 

Ex: Timing diagram for IN 80H. 
 

The instruction and the corresponding codes and memory locations are given in Table 5. 
 

Table 5 IN instruction 
 

Address Mnemonics Opcode 

800F IN 80H DB 

8010  80 

 

i. During the first machine cycle, the opcode DB is fetched from the 

memory, placed in the instruction register and decoded. 

ii. During second machine cycle, the port address 80H is read from the 

next memory location. 

iii. During the third machine cycle, the address 80H is placed in the address 



Microprocessor and Microcontrollers 
 

bus and the data read from that port address is placed in the 

accumulator. 

The timing diagram is shown in Fig. 12. 
 
 

 
 
 

Fig. 12 Timing diagram for the IN instruction 
 

INTERFACING MEMORY CHIPS WITH 8085 

 

8085 has 16 address lines (A0 - A15), hence a maximum of 64 KB (= 216 bytes) 

of memory locations can be interfaced with it. The memory address space of 

the 8085 takes values from 0000H to FFFFH. 

 

The 8085 initiates set of signals such as IO/M , RD and WR when it wants to 

read from and write into memory. Similarly, each memory chip has signals 

such as CE or CS(chip enable 
   

or chip select), OE or RD (output enable or read) and WE or WR (write enable 

or write) associated with it. 

Generation of Control Signals for Memory: 

 

When the 8085 wants to read from and write into memory, it activates IO/M , RD and WR 

signals as shown in Table 8. 

 

Table 8 Status of IO/M , RD and WR signals during memory read and write operations 

 

  
IO/M 

  
RD 

  
WR 

Operation 

0 0 1 8085 reads data from memory 

0 1 0 8085 writes data into memory 



Microprocessor and Microcontrollers 
 

 

 

Using IO/M , RD and WR signals,  two  control  signals  MEMR (memory  

read)  and MEMW (memory write) are generated. Fig. shows the circuit used to 

generate these signals. 

 

 

 
 

Fig. Circuit used to generate MEMR and MEMW signals 
 

When is IO/M high, both memory control signals are deactivated irrespective of the status 
  

of RD and WR signals. 

 

Ex: Interface an IC 2764 with 8085 using NAND gate address decoder such 

that the address range allocated to the chip is 0000H – 1FFFH. 

Specification of IC 2764: 

 

• 8 KB (8 x 210 byte) EPROM chip 

• 13 address lines (213 

bytes = 8 KB) Interfacing: 

• 13 address lines of IC are connected to the corresponding address lines of 8085. 

• Remaining address lines of 8085 are connected to address decoder 

formed using logic gates, the output of which is connected to the CE 

pin of IC. 

• Address range allocated to the chip is shown in Table 9. 

• Chip is enabled whenever the 8085 places an address allocated to 

EPROM chip in the address bus. This is shown in Fig. 17. 



Microprocessor and Microcontrollers 
 

 
Fig. 17 Interfacing IC 2764 with the 8085 

 

Table 9 Address allocated to IC 2764 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Microprocessor and Microcontrollers 
 

Module II 
 

Instruction set and programming with 8085 

 
Based on the design of the ALU and decoding unit, the microprocessor 

manufacturer provides instruction set for every microprocessor. The instruction 

set consists of both machine code and mnemonics. 

An instruction is a binary pattern designed inside a microprocessor to 

perform a specific function. The entire group of instructions that a 

microprocessor supports is called instruction set. Microprocessor instructions 

can be classified based on the parameters such functionality, length and 

operand addressing. 

Classification based on functionality: 

 

I. Data transfer operations: This group of instructions copies data from 

source to destination. The content of the source is not altered. 

II. Arithmetic operations: Instructions of this group perform operations 

like addition, subtraction, increment & decrement. One of the data used 

in arithmetic operation is stored in accumulator and the result is also 

stored in accumulator. 

III. Logical operations: Logical operations include AND, OR, EXOR, 

NOT. The operations like AND, OR and EXOR uses two operands, one 

is stored in accumulator and other can be any register or memory 

location. The result is stored in accumulator. NOT operation requires 

single operand, which is stored in accumulator. 

IV. Branching operations: Instructions in this group can be used to transfer 

program sequence from one memory location to another either 

conditionally or unconditionally. 

V. Machine control operations: Instruction in this group control execution 

of other instructions and control operations like interrupt, halt etc. 

Classification based on length: 

 

I. One-byte instructions: Instruction having one byte in machine code. 

Examples are depicted in Table 2. 

I. Two-byte instructions: Instruction having two byte in machine code. 

Examples are depicted in Table 3 

II. Three-byte instructions: Instruction having three byte in machine code. 

Examples are depicted in Table 4. 

Table 2 Examples of one byte instructions 

 
Opcode Operand Machine code/Hex code 

MOV A, B 78 

ADD M 86 

 
 
 
 

Table 3 Examples of two byte instructions 



Microprocessor and Microcontrollers 
 

Opcode Operand Machine code/Hex code Byte description 
MVI A, 7FH 3E First byte 

  7F Second byte 
ADI 0FH C6 First byte 

  0F Second byte 
 
 

Table 4 Examples of three byte instructions 

Opcode Operand Machine code/Hex code Byte description 
JMP 9050H C3 First byte 

  50 Second byte 
  90 Third byte 

LDA 8850H 3A First byte 
  50 Second byte 
  88 Third byte 

Data transfer instructions: 

 

Instructions, which are used to transfer data from one register to another register, from 

memory to register or register to memory, come under this group. 

EXAMPLES: 

 

1. MOV r1, r2 (Move Data; Move the content of the one register to another). [r1] <-- [r2] 

 

2. MOV r, m (Move the content of memory register). r <-- [M] 

 

3. MOV M, r. (Move the content of register to memory). M <-- [r] 

 

4. MVI r, data. (Move immediate data to register). [r] <-- data. 

 

5. MVI M, data. (Move immediate data to memory). M <-- data. 

 

6. LXI rp, data 16. (Load register pair immediate). [rp] <-- data 16 bits, [rh] <-- 8 LSBs of 

data. 

 

7. LDA addr. (Load Accumulator direct). [A] <-- [addr]. 

 

8. STA addr. (Store accumulator direct). [addr] <-- [A]. 

 

9. LHLD addr. (Load H-L pair direct). [L] <-- [addr], [H] <-- [addr+1]. 

 

10. SHLD addr. (Store H-L pair direct) [addr] <-- [L], [addr+1] <-- [H]. 

11.LDAX rp. (LOAD accumulator indirect) [A] <-- [[rp]] 

12. STAX rp. (Store accumulator indirect) [[rp]] <-- [A]. 

 

13. XCHG. (Exchange the contents of H-L with D-E pair) [H-L] <--> [D-E]. 

 

2.Arithmetic instructions: 

 
The instructions of this group perform arithmetic operations such as addition, subtraction; 

increment or decrement of the content of a register or memory. 



Microprocessor and Microcontrollers 
 

 

Examples: 

 

1. ADD r. (Add register to accumulator) [A] <-- [A] + [r]. 

 

2 .ADD M. (Add memory to accumulator) [A] <-- [A] + [[H-L]]. 

 

3. ADC r. (Add register with carry to accumulator). [A] <-- [A] + [r] + [CS]. 

 

4. ADC M. (Add memory with carry to accumulator) [A] <-- [A] + [[H-L]] [CS]. 

 

5 .ADI data (Add immediate data to accumulator) [A] <-- [A] + data. 

 

6 .ACI data (Add with carry immediate data to accumulator). [A] <-- [A] + data + [CS]. 

7.DAD rp. (Add register pair to H-L pair). [H-L] <-- [H-L] + [rp]. 

8.SUB r. (Subtract register from accumulator). [A] <-- [A] – [r]. 

9.SUB M. (Subtract memory from accumulator). [A] <-- [A] – [[H-L]]. 

10.SBB r. (Subtract register from accumulator with borrow). [A] <-- [A] – [r] – [CS]. 

11.SBB M. (Subtract memory from accumulator with borrow). [A] <-- [A] – [[H-L]] – [CS]. 

12.SUI data. (Subtract immediate data from accumulator) [A] <-- [A] – data. 

13. SBI data. (Subtract immediate data from accumulator with borrow). [A] <-- [A] – data – 

[CS]. 

 

14. INR r (Increment register content) [r] <-- [r] +1. 

 

15. INR M. (Increment memory content) [[H-L]] <-- [[H-L]] + 1. 

 

16. DCR r. (Decrement register content). [r] <-- [r] – 1. 

 

17. DCR M. (Decrement memory content) [[H-L]] <-- [[H-L]] – 1. 

18.INX rp. (Increment register pair) [rp] <-- [rp] – 1. 

19.DCX rp (Decrement register pair) [rp] <-- [rp] -1. 

20.DAA (Decimal adjust accumulator). 

3)Logical instructions: 

 

The Instructions under this group perform logical operation such as AND, OR, compare, 

rotate etc. 



Microprocessor and Microcontrollers 
 

Examples: 

 

1. ANA r. (AND register with accumulator) [A] <-- [A] ^ [r]. 

 

2. ANA M. (AND memory with accumulator). [A] <-- [A] ^ [[H-L]]. 

3.ANI data. (AND immediate data with accumulator) [A] <-- [A] ^ data. 

4).ORA r. (OR register with accumulator) [A] <-- [A] ˅[r]. 

5.ORA M. (OR memory with accumulator) [A] <-- [A] ˅ [[H-L]] 

6.ORI data. (OR immediate data with accumulator) [A] <-- [A] ˅ data. 

7.XRA r. (EXCLUSIVE – OR register with accumulator) [A] <-- [A] xor [r] 

8.XRA M. (EXCLUSIVE-OR memory with accumulator) [A] <-- [A] xor [[H-L]] 

9.XRI data. (EXCLUSIVE-OR immediate data with accumulator) [A] <-- [A] xor data. 

10.CMA. (Complement the accumulator) [A] <-- [A]ˈ 

11.CMC. (Complement the carry status) [CS] <-- [CS]ˈ 

12.STC. (Set carry status) [CS] <-- 1. 

13.CMP r. (Compare register with accumulator) [A] – [r] 

14.CMP M. (Compare memory with accumulator) [A] – [[H-L]] 

15. CPI data. (Compare immediate data with accumulator) [A] – data. 

 

16. RAL (Rotate accumulator left) [An+1] <-- [An], [A0] <-- [A7],[CS] <-- [A7]. 

The content of the accumulator is rotated left by one bit. The seventh bit of the accumulator is 

moved to carry bit as well as to the zero bit of the accumulator. Only CS flag is affected. 

 

17. RAR. (Rotate accumulator right) [A7] <-- [A0], [CS] <-- [A0], [An] <-- [An+1]. 

The content of the accumulator is rotated right by one bit. The zero bit of the accumulator is 

moved to the seventh bit as well as to carry bit. Only CS flag is affected. 

 

18. RLC. (Rotate accumulator left through carry) [An+1] <-- [An], [CS] <-- [A7], [A0] <-- 

[CS]. 



Microprocessor and Microcontrollers 
 

19. RRC. (Rotate accumulator right through carry) [An] <-- [An+1], [CS] <-- [A0], [A7] <-- 

[CS]. 

 

4)Branching Instructions: 

 

This group includes the instructions for conditional and unconditional jump, subroutine call 

and return, and restart. 

 

Examples: 

Unconditional jump: 

MP addr (label). (Unconditional jump: jump to the instruction specified by the address). 

[PC] <-- Label. 

Conditional Jump: 

Conditional Jump addr (label): After the execution of the conditional jump instruction the 

program jumps to the instruction specified by the address (label) if the specified condition is 

true. The program proceeds further in the normal sequence if the specified condition is not 

true. 

1.JZ addr (label). (Jump if ZF=1) 

2.JNZ addr (label) (Jump if ZF=0) 

3.JC addr (label). (Jump if CF=1) 

4.JNC addr (label). (Jump if CF=0) 

5.JP addr (label). (Jump if the result is plus) 

6.JM addr (label). (Jump if the result is minus) 

7.JPE addr (label) (Jump if even parity) 

8. JPO addr (label) (Jump if odd parity) 

9. CALL addr (label) (Unconditional CALL: call the subroutine identified by the operand) 

10.CALL instruction is used to call a subroutine. 

11. RET (Return from subroutine). 

12. RST n (Restart) Restart is a one-word CALL instruction. The content of the program 

counter is saved in the stack. The program jumps to the instruction starting at restart location. 

 

5)Stack, I/O and Machine control instructions: 

 

1.IN port-address. (Input to accumulator from I/O port) [A] <-- [Port] 

2.OUT port-address (Output from accumulator to I/O port) [Port] <-- [A] 

3.PUSH rp (Push the content of register pair to stack) 

4. PUSH PSW (PUSH Processor Status Word) 

5. POP rp (Pop the content of register pair, which was saved, from the stack) 

6.POP PSW (Pop Processor Status Word) 

7. HLT (Halt) 

8. XTHL (Exchange stack-top with H-L) 

9. SPHL (Move the contents of H-L pair to stack pointer) 

10.EI (Enable Interrupts) 

11. DI (Disable Interrupts) 



Microprocessor and Microcontrollers 
 

12. SIM (Set Interrupt Masks)  

13.RIM (Read Interrupt Masks) 

 14.NOP (No Operation). 

 

Instruction Formats: 

The Instruction Format of 8085 set consists of one, two and three byte instructions. The first byte is always 

the opcode; in two-byte instructions the second byte is usually data; in three byte instructions the last two 

bytes present address or 16-bit data. 

1. One byte instruction : 

                                                      
For Example : MOV A, B whose opcode is 78H which is one byte. This Instruction and Data Format of 8085 

copies the contents of B register in A register. 

2. Two byte instruction : 

                                                         
For Example : MVI B, 02H. The opcode for this instruction is 06H and is always followed by a byte data 

(02H in this case). This instruction is a two byte instruction which copies immediate data into B register. 

 
3.Three byte instruction : 

                                                                  
 

For Example : JMP 6200H. The opcode for this instruction is C3H and is always followed by 16 bit address 

(6200H in this case). This instruction is a three byte instruction which loads 16 bit address into program 

counter. 

Opcode Format of 8085: 

 

The 8085A microprocessor has 8-bit opcodes. The opcode is unique for each Instruction and Data Format of 

8085 and contains the information about operation, register to be used, memory to be used etc. The 8085A 

identifies all operations, registers and flags with a specific code. For example, all internal registers are 

identified as shown in the Tables 2.1(a) and 2.2(b). 

 

https://www.eeeguide.com/wp-content/uploads/2018/07/Instruction-and-Data-Format-of-8085-1.jpg
https://www.eeeguide.com/wp-content/uploads/2018/07/Instruction-and-Data-Format-of-8085-1.jpg


Microprocessor and Microcontrollers 
 
 

Similarly, there are different codes for each opera are identified as follows : 

                        
 

Note : DDD defines the destination register, SSS defines the source register and DD defines the register pair. 

 

 

Data Format of 8085 Microprocessor: 

The operand is an another name for data. It may appear in different forms : 

• Addresses 

• Numbers/Logical data and 

• Characters 

Addresses : The address is a 16-bit unsigned integer ,number used to refer a memory location. 

Numbers/Data : The 8085 supports following numeric data types. 

• Signed Integer : A signed integer number is either a positive number or a negative number. In 8085, 

8-bits are assigned for signed integer, in which most significant bit is used for sign and remaining 

seven bits are used for Sign bit 0 indicates positive number whereas sign bit 1 indicates negative 

number. 

• Unsigned Integer : The 8085 microprocessor supports 8-bit unsigned integer. 

• BCD : The term BCD number stands for binary coded decimal number. It uses ten digits from 0 

through 9. The 8-bit register of 8085 can store two digit BCD 

Characters : The 8085 uses ASCII code to represent characters. It is a 7-bit alphanumeric code that 

represents decimal numbers, English alphabets, and other special characters. 

 

Stack and subroutine 

The stack is a LIFO (last in, first out) data structure implemented in the RAM area and is used to store 

addresses and data when the microprocessor branches to a subroutine. Then the return address used to get 

pushed on this stack. Also to swap values of two registers and register pairs we use the stack as well. 

In the programmer‘s view of 8085, only the general purpose registers A, B, C, D, E, H, and L, and the 

Flags registers were discussed so far. But in the complete programmer’s view of 8085, there are two more 

special purpose registers, each of 16-bit width. They are the stack pointer, SP, and the program counter, PC. 

The Stack Pointer register will hold the address of the top location of the stack. And the program counter is a 

register always it will hold the address of the memory location from where the next instruction for execution 

will have to be fetched. The complete programmer's view of 8085 is shown in the following figure. 

http://www.allaboutcircuits.com/


Microprocessor and Microcontrollers 
 

 

Fig. Programmer's view of 8085 

SP is a special purpose 16-bit register. It contains a memory address. Suppose SP contents are FC78H, then 

the 8085 interprets it as follows. 

Memory locations FC78H, FC79H, ..., FFFFH are having useful information. In other words, these locations 

are treated as filled locations. Memory locations FC77H, FC76H, ..., 0000H are not having any useful 

information. In other words, these locations are treated as empty locations. 

On a stack, we can perform two operations. PUSH and POP. In case of PUSH operation, the SP register gets 

decreased by 2 and new data item used to insert on to the top of the stack. On the other hand, in case of POP 

operation, the data item will have to be deleted from the top of the stack and the SP register will get increased 

by the value of 2. 

Thus, the contents of SP specify the top most useful location in the stack. In other words, it indicates the 

memory location with the smallest address having useful information. This is pictorially represented in the 

following figure – 

 

Fig. Interpretation of SP contents 

 

Subroutine: 

In computers, a subroutine is a sequence of program instructions that perform a specific task, packaged 

as a unit. This unit can then be used in programs wherever that particular task have to be performed. A 

subroutine is often coded so that it can be started (called) several times and from several places during one 

execution of the program, including from other subroutines, and then branch back (return) to the next 

instruction after the call, once the subroutine’s task is done. It is implemented by using Call and Return 

instructions. The different types of subroutine instructions are 

Unconditional Call instruction – 

CALL address is the format for unconditional call instruction. After execution of this instruction program 

control is transferred to a sub-routine whose starting address is specified in the instruction. Value of PC 

(Program Counter) is transferred to the memory stack and value of SP (Stack Pointer) is decremented by 2. 

https://www.eeeguide.com/wp-content/uploads/2018/07/Instruction-and-Data-Format-of-8085-3.jpg
https://www.eeeguide.com/wp-content/uploads/2018/07/Instruction-and-Data-Format-of-8085-3.jpg


Microprocessor and Microcontrollers 
 
Conditional Call instruction – 

In these instructions program control is transferred to subroutine and value of PC is pushed into stack only if 

condition is satisfied. 

INSTRUCTION PARAMETER COMMENT 

CC 16-bit address Call at address if cy (carry flag) = 1 

CNC 16-bit address Call at address if cy (carry flag) = 0 

CZ 16-bit address Call at address if ZF (zero flag) = 1 

CNZ 16-bit address Call at address if ZF (zero flag) = 0 

CPE 16-bit address Call at address if PF (parity flag) = 1 

CPO 16-bit address Call at address if PF (parity flag) = 0 

CN 16-bit address Call at address if SF (signed flag) = 1 

CP 16-bit address Call at address if SF (signed flag) = 0 

 

Unconditional Return instruction –RET is the instruction used to mark the end of sub-routine. It has 

no parameter. After execution of this instruction program control is transferred back to main program 

from where it had stopped. Value of PC (Program Counter) is retrieved from the memory stack and 

value of SP (Stack Pointer) is incremented by 2. 

Conditional Return instruction – 

By these instructions program control is transferred back to main program and value of PC is popped 

from stack only if condition is satisfied. There is no parameter for return instruction. 

 

INSTRUCTION COMMENT 

RC Return from subroutine if cy (carry flag) = 1 

RNC Return from subroutine if cy (carry flag) = 0 

RZ Return from subroutine if ZF (zero flag) = 1 

RNZ Return from subroutine if ZF (zero flag) = 0 

RPE Return from subroutine if PF (parity flag) = 1 

RPO Return from subroutine if PF (parity flag) = 0 

RN Return from subroutine if SF (signed flag) = 1 

RP Return from subroutine if SF (signed flag) = 0 

Advantages of Subroutine – 

1. Decomposing a complex programming task into simpler steps. 

2. Reducing duplicate code within a program. 



Microprocessor and Microcontrollers 
 
3. Enabling reuse of code across multiple programs. 

4. Improving tractability or makes debugging of a program easy. 

 

 

Assembler and Assembler directives  

 

Definition: Assembler directives are the instructions used by the assembler at the time of assembling a 

source program. More specifically, we can say, assembler directives are the commands or instructions that 

control the operation of the assembler. 

Assembler directives are the instructions provided to the assembler, not the processor as the processor has 

nothing to do with these instructions. These instructions are also known as pseudo-instructions or pseudo-

opcode. 

So, assembler directives: 

• show the beginning and end of a program provided to the assembler, 

• used to provide storage locations to data, 

• used to give values to variables, 

• define the start and end of different segments, procedures or macros etc. of a program. 

  

Assembler: 

We know that assembly language is a less complex and programmer-friendly language used to program the 

processors. 

In assembly language programming, the instructions are specified in the form of mnemonics rather in the 

form of machine code i.e., 0 and 1. 

But the microprocessor or microcontrollers are specifically designed in a way that they can only understand 

machine language. 

Thus assembler is used to convert assembly language into machine code so that it can be understood and 

executed by the processor. 

Therefore, to control the generation of machine codes from the assembly language, assembler directives are 

used. 

However, machine codes are only generated for the program that must be provided to the processor and not 

for assembler directives because they do not belong to the actual program. 

 

Assembler Directives of 8085 

The assembler directives given below are used by 8085 and 8086 assemblers: 

DB: Define Byte 

This directive is used for the purpose of allocating and initializing single or multiple data bytes. 

Ex:Num1 DB 30H,25H,60H 

 i.e.,Num1 memory has 32 consecutive where 30H,25H and 60H are stored. 

DW: Define Word 

It is used for initialising single or multiple data words  (16-bit) 

Ex:Num2 DW 1020H,4216H 

These two 16-bit data 1020H and 4216H are stored at 4 consecutive locations in the memory Num2. 

END: End of program 

This directive is used at the time of program termination. 

EQU: Equate 

https://electronicsdesk.com/assembly-language-programming.html


Microprocessor and Microcontrollers 
 
It is used to assign any numerical value or constant to the variable. 

MACRO: Represents beginning 

Shows the beginning of macro along with defining name and parameters. 

ENDM: End of macro 

ENDM indicates the termination of macro. 

ORG: Origin 

This directive is used at the time of assigning starting address for a module or segment. 

Programming Techniques in Microprocessor 8085: 

We have seen the instruction set of 8085 and some simple assembly language programs using it. We know 

that, the program is an implementation of certain logic by executing group of instructions. To implement 

program logic we need to take help of some common Programming Techniques in Microprocessor 8085 such 

as looping, counting, indexing and code conversion. 

In this section, we are going to study how to implement these Programming Techniques in Microprocessor 

8085 assembly language and some programming examples using them. 

1. Looping, Counting and Indexing: 
Before going to implement these Programming Techniques in Microprocessor 8085, we get conversant with 

these techniques and understand the use of them. 

Looping : In this Programming Techniques in Microprocessor 8085, the Program is instructed to execute 

certain set of instructions repeatedly to execute a particular task number of times. For example, to add ten 

numbers stored in the consecutive memory locations we have to perform addition ten times. 

Counting : This technique allows programmer to count how many times the instruction/set of instructions are 

executed. 

Indexing : This Programming Techniques in Microprocessor 8085 allows programmer to point or refer the 

data stored in sequential memory locations one by one. Let us see the program loop to understand looping, 

counting and indexing. 

The Program loop is the basic structure which forces the processor to repeat a sequence of instructions. Loops 

have four sections. 

• Initialization section. 

• Processing section. 

• Loop control section 

• Result section. 



Microprocessor and Microcontrollers 
 

 

1. The initialization section establishes the starting values of 

• loop counters for counting how many times loop is executed, 

• address registers for indexing which give pointers to memory locations and 

• other variables 

2. The actual data manipulation occurs in the processing section. This is the section which does the 

work. 

3. The loop control section updates counters, indices (pointers) for the next iteration. 

4. The result section analyzes and stores the results. 

Note : The processor executes initialization section and result section only once, while it may execute 

processing section and loop control section many times. Thus, the execution time of the loop will be mainly 

dependent on the execution time of the processing section and loop control section. The flowchart 1 shows 

typical Program loop. The processing section in this flowchart is always executed at least once. If you 

interchange the position of the processing and loop control section then it is possible that the processing 

section may not be executed at all, if necessary. Refer flowchart 2. 
2. Timers: 
In the real time applications, such as traffic light control, digital clock, process control, serial communication, 

it is important to keep a track with time. For example in traffic light control application, it is necessary to give 

time delays between two transitions. These time delays are in few seconds and can be generated with the help 

of executing group of instructions number of times. This software timers are also called time delays or 

software delays. Let us see how to implement these time delays or software delays. 

As you know microprocessor system consists of two basic components, Hardware and software. The software 

component controls and operates the hardware to get the desired output with the help of instructions. To 

execute these instructions, microprocessor takes fix time as per the instruction, since it is driven by constant 

frequency clock. This makes it possible to introduce delay for specific time between two events. In the 

following section we will see different delay implementation techniques. 

2.1 Timer Delay Using NOP Instruction: 

NOP instruction does nothing but takes 4T states of processor time to execute. So by executing NOP 

instruction in between two instructions we can get delay of 4 T-state 



Microprocessor and Microcontrollers 
 
 

                                        

2.2 Timer Delay Using Counters: 

Counting can create time delays. Since the execution times of the instructions used in a counting routine are 

known, the initial value of the counter, required to get specific time delay can be determined. 

 
 

 

 
 

2.3 Timer Delay Using Nested Loops: 

In this, there are more than one loops. The innermost loop is same as explained above. The outer loop sets the 

multiplying count to the delays provided by the innermost loop. 

 
 

 

3. Code Conversion: 
This Programming Techniques in Microprocessor 8085 is to translate a number represented using one coding 

system to another. For example,, when we accept any number from the keyboard it is in ASCII code. But for 

processing, we have to convert this number in its hex equivalent. The code conversion involves some basic 

conversions such as 

• BCD to Binary conversion 

• Binary to BCD conversion 

• BCD to seven segment code conversion 

• Binary to ASCII conversion and 

• ASCII to binary conversion 

 



Microprocessor and Microcontrollers 
 

BCD to Binary Conversion: 

We are more familar with the decimal number system. But the microprocessor understands the binary/hex 

number system. To convert BCD number into its binary equivalent we have to use the principle of positional 

weighting in a given number. 

Binary to BCD Conversion: 

We know that microprocessor processes data in the binary form. But when it is displayed, it is in the BCD 

form. In this case we need binary to BCD conversion of data. The conversion of binary to BCD is performed 

by dividing the number by the power of ten. 

BCD to Seven Segment Conversion: 

Many times 7-segment LED display is used to display the results or parameters in the microprocessor system. 

In such cases we have to convert the result or parameter in 7-segment code. This conversion can be done 

using look-up technique. In the look-up table the codes of the digits (0-9) to be displayed are stored 

sequentially in the memory. The conversion program locates the code of a digit based on its BCD digit. Let us 

see the Program for BCD to comsmon cathode 7-segment code conversion. 

Binary to ASCII Code Conversion: 

The ASCII Code (American Standard Code for Information Interchange) is commonly used for 

communication. In such cases we need to convert binary number to its ASCII equivalent. It is a seven bit 

code. In this code number 0 through 9 are represented as 30 through 39 respectively and letters A through Z 

are represented as 41H through 5AH. Therefore, by adding 30H we can convert number into its ASCII 

equivalent and by adding 37H we can convert letter to its ASCII equivalent. Let us see the Program for binary 

to ASCII code conversion. 

ASCII Code to Binary Conversion: 

It is exactly reverse process to binary to ASCII conversion. Here, if ASCII code is less than 3AH then 30H is 

subtracted to get the binary equivalent and if it is in between 41H and 5AH then 37H is subtracted to get 

the binary equivalent of letter (A-F). 

 

Addressing Modes in Instructions: 
 

The process of specifying the data to be operated on by the instruction is called addressing. 

The various formats for specifying operands are called addressing modes. The 8085 has the 

following five types of addressing: 

I. Immediate addressing 

II. Memory direct addressing 

III. Register direct addressing 

IV. Indirect addressing 

V. Implicit addressing 

Immediate Addressing: 

In this mode, the operand given in the instruction - a byte or word – transfers to the 

destination register or memory location. 

Ex: MVI A, 9AH 

• The operand is a part of the instruction. 

• The operand is stored in the register mentioned in the instruction. 

Memory Direct Addressing: 

Memory direct addressing moves a byte or word between a memory location and 

register. The memory location address is given in the instruction. 

Ex: LDA 850FH 

This instruction is used to load the content of memory address 850FH in the accumulator. 

Register Direct Addressing: 

Register direct addressing transfer a copy of a byte or word from source register to 

destination register. 

Ex: MOV B, C 

http://www.allaboutcircuits.com/


Microprocessor and Microcontrollers 
 

It copies the content of register C to register B. 

Indirect Addressing: 

Indirect addressing transfers a byte or word between a register and a memory location. 

Ex: MOV A, M 

Here the data is in the memory location pointed to by the contents of HL pair. The data is 

moved to the accumulator. 

Implicit Addressing 

In this addressing mode the data itself specifies the data to be operated upon. 

Ex:CMA 

The instruction complements the content of the accumulator. No specific data or operand is 

mentioned in the instruction. 

 

 

Examples of  Assembly language program using 8085 

 

1.BCD to Binary Conversion 

 

MVI A,72 

MOV B,A 

ANI 0FH 

MOV C,A 

MOV A,B 

ANI 0F0H 

JZ BCD1 

RRC 

RRC 

RRC 

RRC 

MOV D,A 

XRA A 

MVI E,0AH 

SUM:ADD E 

DCR D 

JNZ SUM 

BCD1:ADD C 

MOV A,C 

STA 2000H 

HLT 

 

RESULT: 48 

 

Binary to BCD Conversion: 

 

MVI A,8AH 

MVI B,64H 

MVI C,0AH 

MVI D,00H 

MVI E,00H 

STEP1:CMP B 

JC STEP2 

SUB B 

INR E 



Microprocessor and Microcontrollers 
 
JMP STEP1 

STEP2:CMP C 

JC STEP3 

SUB C 

INNR D 

JMP STEP2 

STEP3:STA 2000H 

MOV A,D 

STA 2001H 

MOV A,E 

STA 2002H 

HLT 

 

Input:8AH 

Output:2000h-8,2001h-3,2002h-1 

  

Binary to ASCII 

 

LDA 2050 

CALL 2500 

STA 3050 

LDA 2050 

RLC 

RLC 

RLC 

RLC 

CALL 2500 

STA 3051 

HLT 

2500:ANI 0FH 

 CPI 0AH 

 JNC NEXT 

 ADI 30 

RET 

NEXT:ADI 37H 

 RET 

 

Input:2050-4AH 

Output:3050-41H 

 3051-34H 

 

ASCII to Binary 

 

LDA 2000H 

SUI 30H 

CPI 0AH 

JC NEXT 

SUI 07H 

NEXT:STA 2001 

 HLT 

 

Bcd To Common Cathode Seven Segment Display 

 

LXI H,2050 

MOV A,M 

MOV D,A 

LXI B,3050 



Microprocessor and Microcontrollers 
 
ANI 0F0H 

RRC 

RRC 

RRC 

RRC 

CALL SUB 

INX B 

MOV A,D 

ANI 0FH 

CALL SUB 

INX B 

INX H 

SUB:LXI H,4050 

ADD L 

MOV L,A 

MOV A,M 

STAX B 

RET 

 

Input:2050h-34 

Output:3050h-4F 

 3051h-66 

 

 

Ascending Order 

 

LXI H,2300 

MVI C,03 

DCR C 

START:MOV D,C 

CHECK:MOV A,B 

 INX H 

 CMP M 

 JC NEXTBYTE 

MOV B,M 

MOV M,A 

DCX H 

MOV M,B 

INX H 

NEXTBYTE:DCR D 

  JNZ CHECK 

  DCR C 

  JNZ START 

  HLT 

 

Descending Order 

LXI H,2300 

MVI C,03 

DCR C 

START:MOV D,C 

CHECK:MOV A,B 

 INX H 

 CMP M 

 JNC NEXTBYTE 

MOV B,M 

MOV M,A 

DCX H 



Microprocessor and Microcontrollers 
 

MOV M,B 

INX H 

NEXTBYTE:DCR D 

  JNZ CHECK 

  DCR C 

  JNZ START 

  HLT 

 

Addition: 

 

MVI C,00 

LDA 4000H 

MOV B,A 

LDA 4001H 

ADD B 

JNC LOOP 

INR C 

LOOP:STA 4002H 

 MOV A,C 

 STA 4003H 

HLT 

 

Subtraction 

 

MVI C,00H 

LDA 4000H 

MOV B,A 

LDA 4001H 

SUB B 

JNC LOOP 

CMA 

INR A 

INR C 

LOOP:STA 4002H 

 MOV A,C 

 STA 4003H 

HLT 

 

Multiplication: 

 

MVI D,00H 

MVI A,00H 

LXI H,4150H 

MOV B,M 

INX H 

MOV C,M 

LOOP:ADD B 

 JNC NEXT 

 INR D 

NEXT:DCR C 

 JNZ LOOP 

 STA 4152H 

 MOV A,D 

STA 4153H 

HLT 

 

Division: 



Microprocessor and Microcontrollers 
 
LXI H,4150H 

MOV B,M 

MVI C,00H 

INX H 

MOV A,M 

NEXT:CMP B 

 JC LOOP 

 SUB B 

 INR C 

 JMP NEXT 

LOOP:STA 4152H 

 MOV A,C 

 STA 4153H 

HLT 

 

Logical Operations: 

 

LDA 4000H 

MOV B,A 

LDA 4001H 

ANA B 

STA 4002H 

LDA 4001H 

ORA B 

STA 4003H 

LDA 4001H 

CMA 

 STA 4004H 

LDA 4001H 

XRA B 

STA 4005H 

HLT 

 

 

*********************************************************************** 

 

 

 

   



Microprocessor and Microcontrollers 
 

UNIT-III 

8086 Architecture 
Introduction to Microprocessors 

A microprocessor is a computer processor which incorporates the functions    of    

a computer's central    processing    unit    (CPU) on    a single integrated circuit (IC), or at 

most a few integrated circuits 

The microprocessor is a multipurpose, clock driven, register based, digital-

integrated circuit which accepts binary data as input, processes it according to instructions 

stored in its memory, and provides results as output. Microprocessors contain both 

combinational logic and sequential digital logic. Microprocessors operate on numbers and 

symbols represented in the binary numeral system. 

Generation of Microprocessors: 

➢ INTEL 4004 ( 1971) 

 4-bit microprocessor 

 4 KB main memory 

 45 instructions 

 PMOS technology 

 was first programmable device which was used in calculators 

➢ INTEL 8008 (1972) 

 8-bit version of 4004 

 16 KB main memory 

 48 instructions 

 PMOS technology 

 Slow 

➢ Intel 8080 (1973) 

• 8-bit microprocessor 

 64 KB main memory 

 2 microseconds clock cycle time 

 500,000 instructions/sec 

 10X faster than 8008 

 NMOS technology 

 Drawback was that it needed three power supplies. 

https://en.wikipedia.org/wiki/Computer_processor
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Binary_code
https://en.wikipedia.org/wiki/Instruction_(computing)
https://en.wikipedia.org/wiki/Instruction_(computing)
https://en.wikipedia.org/wiki/Memory_(computing)
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Binary_numeral_system


Microprocessor and Microcontrollers 
 

 Small computers (Microcomputers) were designed in mid 

1970’s 

Using 8080 as CPU. 

 

➢ INTEL 8086/8088 

 

Year of introduction 1978 for 8086 and 1979 for 8088 

 16-bit microprocessors 

 Data bus width of 8086 is 16 bit and 8 bit for 8088 

 1 MB main memory 

 400 nanoseconds clock cycle time 

 6 byte instruction cache for 8086 and 4 byte for 8088 

 Other improvements included more registers and additional instructions 

 In 1981 IBM decided to use 8088 in its personal computer 

 

➢ INTEL 80186 (1982) 

 

 16-bit microprocessor-upgraded version of 8086 

 1 MB main memory 

 Contained special hardware like programmable counters, 

interrupt controller etc. 

 Never used in the PC 

 But was ideal for systems that required a minimum of hardware . 

➢ INTEL 80286 (1983) 

 16-bit high performance microprocessor with memory 

management & protection 

 16 MB main memory 

 Few additional instructions to handle extra 15 MB 

 Instruction execution time is as little as 250 ns 

 Concentrates on the features needed to implement 

MULTITASKING 

 

➢ Intel 80386 (1986) 

➢ Intel 80486 (1989) 

➢ Pentium (1993) 

➢ Pentium pro(1995) 

➢ Pentium ii (1997) 

➢ Pentium iii (1999) 

➢ Pentium iv (2002) 

➢ Latest is Intel i9 processor 



Microprocessor and Microcontrollers 
 

General Architecture of Microprocessors 

 

 

Buses 

 



Microprocessor and Microcontrollers 
 

Register Organization of 8086 

8086 has a powerful set of registers containing general purpose and 

special purpose registers. All the registers of 8086 are 16-bit registers. The 

general purpose registers, can be used either 8-bit registers or 16-bit 

registers. The general purpose registers are either used for holding the data, 

variables and intermediate results temporarily or for other purpose like 

counter or for storing offset address for some particular addressing modes 

etc. The special purpose registers are used as segment registers, pointers, 

index registers or as offset storage registers for particular addressing modes. 

Fig 1.4 shows register organization of 8086. We will categorize the register 

set into four groups as follows: 
 
 

 

General data Registers: 
 

The registers AX, BX, CX, and DX are the general 16-bit registers. 
 

AX Register: Accumulator register consists of two 8-bit registers AL and 

AH, which can be combined together and used as a 16- bit register AX. AL 

in this case contains the low-order byte of the word, and AH contains the 

high- order byte. Accumulator can be used for I/O operations, rotate and 

string manipulation. 
 

BX Register: This register is mainly used as a base register. It holds the 

starting base location of a memory region within a data segment. It is used as 

offset storage for forming physical address in case of certain addressing 

mode. 
 

CX Register: It is used as default counter or count register in case of string 

and loop instructions. 



Microprocessor and Microcontrollers 
 

DX Register: Data register can be used as a port number in I/O operations and implicit 

operand or destination in case of few instructions. In integer 32-bit multiply and divide 

instruction the DX register contains high-order word of the initial or resulting number. 

 

Segment registers: 

To complete 1Mbyte memory is divided into 16 logical segments. The complete 1Mbyte 

memory segmentation is as shown in fig 1.5. Each segment contains 64Kbyte of memory. 

There are four segment registers. 

 

Code segment (CS) is a 16-bit register containing address of 64 KB segment with 

processor instructions. The processor uses CS segment for all accesses to instructions 

referenced by instruction pointer (IP) register. CS register cannot be changed directly. 

The CS register is automatically updated during far jump, far call and far return 

instructions. It is used for addressing a memory location in the code segment of the 

memory, where the executable program is stored. 

 

Stack segment (SS) is a 16-bit register containing address of 64KB segment with 

program stack. By default, the processor assumes that all data referenced by the stack 

pointer (SP) and base pointer (BP) registers is located in the stack segment. SS register 

can be changed directly using POP instruction. It is used for addressing stack segment of 

memory. The stack segment is that segment of memory, which is used to store stack data. 

 

Data segment (DS) is a 16-bit register containing address of 64KB segment with 

program data. By default, the processor assumes that all data referenced by general 

registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment. DS 

register can be changed directly using POP and LDS instructions. It points to the data 

segment memory where the data is resided. 

 

Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually 

with program data. By default, the processor assumes that the DI register references the 

ES segment in string manipulation instructions. ES register can be changed directly using 

POP and LES instructions. It also refers to segment which essentially is another data 

segment of the memory. It also contains data. 



Microprocessor and Microcontrollers 
 

 
 

 

 

Pointers and index registers. 

The pointers contain within the particular segments. The pointers IP, BP, SP usually 

contain offsets within the code, data and stack segments respectively 

 

Stack Pointer (SP) is a 16-bit register pointing to program stack in stack segment. 

 

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is 

usually used for based, based indexed or register indirect addressing. 

 

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register 

indirect addressing, as well as a source data addresses in string manipulation instructions. 

 

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and 

register indirect addressing, as well as a destination data address in string manipulation 

instructions. 



Microprocessor and Microcontrollers 
 

 

 

 

 

 

Flag Register: 

 

 

Flags Register determines the current state of the processor. They are modified 

automatically by CPU after mathematical operations, this allows to determine the type of 

the result, and to determine conditions to transfer control to other parts of the program. 

The 8086 flag register as shown in the fig 1.6. 8086 has 9 active flags and they are 

divided into two categories: 

 

1. Conditional Flags 

2. Control Flags 

 

Conditional flags are as follows: 

 

Carry Flag (CY): This flag indicates an overflow condition for unsigned integer 

arithmetic. It is also used in multiple-precision arithmetic. 

 

Auxiliary Flag (AC): If an operation performed in ALU generates a carry/barrow from 

lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7), the AC flag is set i.e. carry 

given by D3 bit to D4 is AC flag. This is not a general-purpose flag, it is used internally 

by the Processor to perform Binary to BCD conversion. 

 

 

Parity Flag (PF):This flag is used to indicate the parity of result. If lower order 8-bits of 

the result contains even number of 1’s, the Parity Flag is set and for odd number of 1’s, 

the Parity flag is reset. 

 

Zero Flag (ZF):It is set; if the result of arithmetic or logical operation is zero else it is 

reset. 



Microprocessor and Microcontrollers 
 

Sign Flag (SF):In sign magnitude format the sign of number is indicated by MSB bit. If 

the result of operation is negative, sign flag is set. 

 

Control Flags 

 

Control flags are set or reset deliberately to control the operations of the execution unit. 

Control flags are as follows: 

 

Trap Flag (TF): It is used for single step control. It allows user to execute one 

instruction of a program at a time for debugging. When trap flag is set, program can be 

run in single step mode. 

 

Interrupt Flag (IF):It is an interrupt enable/disable flag. If it is set, the maskable 

interrupt of 8086 is enabled and if it is reset, the interrupt is disabled. It can be set by 

executing instruction sit and can be cleared by executing CLI instruction. 

 

Direction Flag (DF):It is used in string operation. If it is set, string bytes are accessed 

from higher memory address to lower memory address. When it is reset, the string bytes 

are accessed from lower memory address to higher memory address. 



Microprocessor and Microcontrollers 
 

8086 Architecture 
 

The 8086 is mainly divided into mainly two blocks 

1. Execution Unit (EU) 2.Bus 

interface Unit (BIU) 

Dividing the work between these two will speedup the processing 

1) EXECUTION UNIT( EU) 

The Execution unit tells the BIU where to fetch instructions or data 

from 

➢ decodes instructions and 

➢ Executes instructions 

The Execution unit contains: 

1) Control circuitry 

2) ALU 

3) FLAGS 

4) General purpose Registers 

5) Pointer and Index Registers 

Control Circuitry: 

➢ It directs internal operations. 



Microprocessor and Microcontrollers 
 

➢ A decoder in the EU translates instructions fetched from memory Into series 

of actions which the EU carries out 

 

Arithmetic Logic Unit: 

16 bit ALU 

Used to carry the operations 

 ADD 

 SUBTRACT 

 XOR 

 INCREMENT 

 DECREMENT 

 COMPLEMENT 

 SHIFT BINARY NUMBERS 

FLAG REGISTERS: 

 A flag is a flip flop that indicates some condition produced by execution of an 

instruction or controls certain operation of the EU. 

 It is 16 bit 

 It has nine active flags 

Divided into two types 

1. Conditional flags 

 

2. Control flags 

Conditional Flags 

 

Carry Flag (CY): This flag indicates an overflow condition for unsigned integer 

arithmetic. It is also used in multiple-precision arithmetic. 

 

Auxiliary Flag (AC): If an operation performed in ALU generates a carry/barrow from 

lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7), the AC flag is set i.e. carry 

given by D3 bit to D4 is AC flag. This is not a general-purpose flag, it is used internally 

by the Processor to perform Binary to BCD conversion. 

 

Parity Flag (PF):This flag is used to indicate the parity of result. If lower order 8-bits of 

the result contains even number of 1’s, the Parity Flag is set and for odd number of 1’s, 

the Parity flag is reset. 



Microprocessor and Microcontrollers 
 

Zero Flag (ZF):It is set; if the result of arithmetic or logical operation is zero else it is 

reset. 

 

Sign Flag (SF):In sign magnitude format the sign of number is indicated by MSB bit. If 

the result of operation is negative, sign flag is set. 

 

Control Flags 

 

Control flags are set or reset deliberately to control the operations of the execution unit. 

Control flags are as follows: 

 

Trap Flag (TF): It is used for single step control. It allows user to execute one instruction 

of a program at a time for debugging. When trap flag is set, program can be run in single 

step mode. 

 

Interrupt Flag (IF):It is an interrupt enable/disable flag. If it is set, the maskable 

interrupt of 8086 is enabled and if it is reset, the interrupt is disabled. It can be set by 

executing instruction sit and can be cleared by executing CLI instruction. 

 

Direction Flag (DF):It is used in string operation. If it is set, string bytes are accessed 

from higher memory address to lower memory address. When it is reset, the string bytes 

are accessed from lower memory address to higher memory address. 

 

General Purpose Registers: 

The 8086 general purpose registers are similar to those of earlier generations 8080 and 

8085 .It was designed in such a way that many programs written for 8080 and 8085 could 

easily be translated to run on 8086.The advantage of using internal registers for the 

temporary storage of data is that since data already in the EU ., it can be accessed much 

more quickly than it could be accessed from external memory. 

General Purpose Registers 

The registers AX, BX, CX, and DX are the general 16-bit registers. 

AX Register: Accumulator register consists of two 8-bit registers AL and AH, which can 

be combined together and used as a 16- bit register AX. AL in this case contains the low-

order byte of the word, and AH contains the high- order byte. Accumulator can be used 

for I/O operations, rotate and string manipulation. 

BX Register: This register is mainly used as a base register. It holds the starting base 

location of a memory region within a data segment. It is used as offset storage for 

forming physical address in case of certain addressing mode. 

CX Register: It is used as default counter or count register in case of string and loop 

instructions. 

DX Register: Data register can be used as a port number in I/O operations and implicit 

operand or destination in case of few instructions. In integer 32-bit multiply and divide 

instruction the DX register contains high-order word of the initial or resulting number. 

 

2) BUS INTERFACE UNIT (BIU) 

The BIU sends out 

➢ Addresses 

➢ Fetches instructions from memory 

➢ Read data from ports and memory Or 

The BIU handles all transfer of data and addresses on the buses for the Execution 

Unit 

The Bus interface unit contains 

1) Instruction Queue 



Microprocessor and Microcontrollers 
 

2) Instruction pointer 

3) Segment registers 

4) Address Generator 

Instruction Queue: 

BIU gets upto 6 bytes of next instructions and stores them in the instruction queue. 

When EU executes instructions and is ready for its next instruction, then it simply reads 

the instruction from this instruction queue resulting in increased execution speed. 

Fetching the next instruction while the current instruction executes is called pipelining.( 

based on FIFO) .This is much faster than sending out an addresses to the system memory 

and waiting for memory to send back the next instruction byte or bytes .Here the Queue 

will be dumped and then reloaded from the new Address. 

Segment Register: 

The 8086 20 bit addresses So it can address upto 220 in memory ( 1 Mbyte) but at any 

instant it can address upto 4 64 KB segments. This four segments holds the upper 16 bits 

of the starting address of four memory segments that the 8086 is working with it at 

particular time .The BIU always inserts zeros for the lowest 4 bits of the 20 bit starting 

address 

Example : If the code segment register contains 348AH then the code segment starts at 

348A0H .In other words a 64Kbyte segment can be located anywhere within 1MByte 

address Space but the segment will always starts at an address with zeros in the lowest 4 

bits 

Stack: is a section of memory set aside to store addresses and data while subprogram 

executes is often called segment base . The stack segment register always holds the upper 

16 bit starting address of program stack. 

The extra segment register and data segment register is used to hold the upper 16 bit 

starting addresses of two memory segments that are used for data . 

Instruction Pointer holds the 16 bit address or offset of the next code byte within the 

code segment. The value contained in the Instruction Pointer called as Offset because the 

value must be added to the segment base address in CS to produce the required 20 bit 

address. 

 

CS register contains the Upper 16 bit of the starting address of the code segment 

in the 1 Mbyte address range the instruction pointer contains a 16 bit offset which tells 

wherein that 64 Kbyte code segment the next instruction byte has to be fetched from. 

Stack Register and Stack Pointer: 

Stack: is a section of memory set aside to store addresses and data while 

subprogram executes is often called segment base . The stack segment register always 

holds the upper 16 bit starting address of program stack. The Stack pointer (SP) holds the 

16 bit offset from the starting of the segment to the memory location where a word was 

most recently stored 

.The memory location where the word is stored is called as top of the stack 



Microprocessor and Microcontrollers 
 

 
 

Pointer and Index registers: 

In addition to stack pointer register EU has Base 

pointer Register (BP) 

Source Pointer Register(SP) Destination 

Pointer Register(DP) 

 

These three registers are used to store temporary storage of data like general purpose 

registers .They hold the 16 bit offset data of the data word in one of the segment 

 

Programming model 

 

How can a 20-bit address be obtained, if there are only 16-bit registers? 

However, the largest register is only 16 bits (64k); so physical addresses have to be 

calculated. These calculations are done in hardware within the microprocessor. 

The 16-bit contents of segment register gives the starting/ base address of particular 

segment. To address a specific memory location within a segment we need an offset 

address. The offset address is also 16-bit wide and it is provided by one of the associated 

pointer or index register. 

 

To be able to program a microprocessor, one does not need to know all of its 

hardware architectural features. What is important to the 

programmer is being aware of the various registers within the device and to understand 

their purpose, functions, operating capabilities, and limitations. 

 

The above figure illustrates the software architecture of the 8086 microprocessor. From 

this diagram, we see that it includes fourteenl6-bit internal registers: the instruction 

pointer (IP), four data registers (AX, BX, CX, and DX), two pointer registers (BP and 

SP), two index registers (SI and DI), four segment registers (CS, DS, SS, and ES) and 

status register (SR), with nine of its bits implemented as status and control flags. 



Microprocessor and Microcontrollers 
 

 
 

The point to note is that the beginning segment address must begin at an address 

divisible by 16.Also note that the four segments need not be defined separately. It is 

allowable for all four segments to completely overlap (CS = DS = ES = SS). 

 

Logical and Physical Address 

 

Addresses within a segment can range from address 00000h to address 0FFFFh. 

This corresponds to the 64K-bytelength of the segment. An address within a segment is 

called an offset or logical address. 

 

A logical address gives the displacement from the base address of the segment to 

the desired location within it, as opposed to its "real" address, which maps directly 

anywhere into the 1 MByte memory space. This "real" address is

 called the physical address. 

 

What is the difference between the physical and the logical address? The physical 

address is 20 bits long and corresponds to the actual binary code output by the BIU on the 

address bus lines. The logical address is an offset from location 0 of a given segment. 



Microprocessor and Microcontrollers 
 

 
You should also be careful when writing addresses on paper to do so clearly. To 

specify the logical address XXXX in the stack segment, use the convention SS:XXXX, 

which is equal to [SS] * 16 + XXXX. 

 

Logical address is in the form of: Base Address: Offset Offset is the displacement 

of the memory location from the starting location of the segment. To calculate the 

physical address of the memory, BIU uses the following formula: 

 

Physical Address = Base Address of Segment * 16 + Offset 



Microprocessor and Microcontrollers 
 

 
Example: 

 

The value of Data Segment Register (DS) is 2222H. 

 

To convert this 16-bit address into 20-bit, the BIU appends 0H to the LSB (by 

multiplying with 16) of the address. After appending, the starting address of the Data 

Segment becomes 22220H. 

 

Data at any location has a logical address specified as:2222H: 0016H 

 

Where 0016H is the offset, 2222 H is the value of DS Therefore the physical 

address:22220H + 0016H 

: 22236 H 

 

The following table describes the default offset values to the corresponding memory 

segments. 

 

 
Some of the advantages of memory segmentation in the 8086 are as follows: 

• With the help of memory segmentation a user is able to work with registers 

having only 16-bits. 

• The data and the user’s code can be stored separately allowing for more 

flexibility. 



Microprocessor and Microcontrollers 
 

• Also due to segmentation the logical address range is from 0000H to FFFFH the 

code can be loaded at any location in the memory. 

 

Physical memory organization: 

 

The 8086’s 1Mbyte memory address space is divided in to two independent 

512Kbyte banks: the low (even) bank and the high (odd) bank. Data bytes associated with 

an even address (0000016, 0000216, etc.) reside in the low bank, and those with odd 

addresses (0000116, 0000316, etc.) reside in the high bank. 

 

Address bits A1 through A19 select the storage location that is to be accessed. 

They are applied to both banks in parallel. A0and bank high enable (BHE) are used as 

bank-select signals. 

 

The four different cases that happen during accessing data: 

 

Case 1: When a byte of data at an even address (such as X) is to be accessed: 

 

• A0 is set to logic 0 to enable the low bank of memory. 

• BHE is set to logic 1 to disable the high bank. 

 

Case 2: When a byte of data at an odd addresses (such as X+1) is to be accessed: 



Microprocessor and Microcontrollers 
 

 
 

• A0is set to logic 1 to disable the low bank of memory. 

• BHE is set to logic 0 to enable the high bank. 

 

Case 3: When a word of data at an even address (aligned word) is to be accessed: 

 

 

 

 

 

 

 

 

 

 

• A0 is set to logic 0 to enable the low bank of memory. 

• BHE is set to logic 0 to enable the high bank. 

Case 4: When a word of data at an odd address (misaligned word) is to be accessed, then 

the 8086 need two bus cycles to access it: 

a) During the first bus cycle, the odd byte of the word (in the high bank) is addressed 



Microprocessor and Microcontrollers 
 

• A0 is set to logic 1 to disable the low bank of memory 

• BHE is set to logic 0 to enable the high bank. 

b) During the second bus cycle, the odd byte of the word (in the low bank) is addressed 

 

 

 

 

 

 

 

• A0is set to logic 0 to enable the low bank of memory. 

• BHE is set to logic 1 to disable the high bank. 

Signal Description of 8086 Microprocessor 

 

The 8086 Microprocessor is a 16-bit CPU available in 3 clock rates, i.e. 5, 8 and 

10MHz, packaged in a 40 pin CERDIP or plastic package. The 8086 Microprocessor 

operates in single processor or multiprocessor configurations to achieve high 

performance. The pin configuration is as shown in fig1. Some of the pins serve a 

particular function in minimum mode (single processor mode) and others function in 

maximum mode (multiprocessor mode) configuration. 



Microprocessor and Microcontrollers 
 

 
 

The 8086 signals can be categorized in three groups. The first are the signals 

having common functions in minimum as well as maximum mode, the second are the 

signals which have special functions in minimum mode and third are the signals having 

special functions for maximum mode. 

 

The following signal description is common for both the minimum and maximum 

modes. 

 

 

 

AD15-AD0: 

These are the time multiplexed memory I/O address and data lines. Address 

remains on the lines during T1 state, while the data is available on the data bus during T2, 

T3, TW and T4. Here T1, T2, T3, T4 and TW are the clock states of a machine cycle. TW 

is await state. These lines are active high and float to a tristate during interrupt 

acknowledge and local bus hold acknowledge cycles. 

A19/S6, A18/S5, A17/S4, A16/S3: 

These are the time multiplexed address and status lines. During T1, these are the 

most significant address lines or memory operations. During I/O operations, these lines 

are low. During memory or I/O operations, status information is available on those lines 

for T2, T3, TW and T4 .The status of 



Microprocessor and Microcontrollers 
 

the interrupt enable flag bit(displayed on S5) is updated at the beginning of each clock 

cycle. The S4 and S3 combinedly indicate which segment register is presently being used 

for memory accesses as shown in Table 1.1. 

These lines float to tri-state off (tristated) during the local bus hold acknowledge. 

The status line S6 is always low(logical). The address bits are separated from the status 

bits using latches controlled by the ALE signal. 

 

BHE/S7 (Active Low): 

The bus high enable signal is used to indicate the transfer of data over the higher order 

(D15-D8) data bus as shown in Table 1.2. It goes low for the data transfers over D15-D8 

and is used to derive chip selects of odd address memory bank or peripherals.    is 

low during T1 for read, write and interrupt acknowledge cycles, when- ever a byte is to be 

transferred on the higher byte of the data bus. The status information is available during 

T2,  T3 and T4. The signal is active low and is tristated during 'hold'. It is low during T1 

for the first pulse of the interrupt acknowledge cycle. 

 

 

 

Read signal, when low, indicates the peripherals that the processor is performing a 

memory or I/O read operation.    is active low and shows the state for T2, T3, TW of 

any read cycle. The signal remains tristated during the 'hold acknowledge'. 

 

READY: 

 

This is the acknowledgement from the slow devices or memory that they have 

completed the data transfer. The signal made available by the devices is synchronized by 

the 8284A clock generator to provide ready input to the 8086. The signal is active high. 



Microprocessor and Microcontrollers 
 

INTR-Interrupt Request: 

 

This is a level triggered input. This is sampled during the last clock cycle of each 

instruction to determine the availability of the request. If any interrupt request is pending, 

the processor enters the interrupt acknowledge cycle. This can be internally masked by 

resetting the interrupt enable flag. This signal is active high and internally synchronized. 

 

TEST: 

 

This input is examined by a 'WAIT' instruction. If the TEST input goes low, 

execution will continue, else, the processor remains in an idle state. The input is 

synchronized internally during each clock cycle on leading edge of clock. 

 

NMI-Non-maskable Interrupt: 

 

This is an edge-triggered input which causes a Type2 interrrupt. The NMI is not 

maskable internally by software. A transition from low to high initiates the interrupt 

response at the end of the current instruction. This input is internally synchronized. 

 

RESET: 

 

This input causes the processor to terminate the current activity and start execution 

from FFFF0H. The signal is active high and must be active for at least four clock cycles. 

It restarts execution when the RESET returns low. RESET is also internally synchronized. 

 

CLK-Clock Input: 

 

The clock input provides the basic timing for processor operation and bus control 

activity. Its an asymmetric square wave with 33% duty cycle. The range of frequency for 

different 8086 versions is from 5MHz to 10MHz. 

 

VCC : 

 

+5V power supply for the operation of the internal circuit. GND ground for the 

internal circuit. 

 

MN/MX : 

 

The logic level at this pin decides whether the processor is to operate in either 

minimum (single processor) or maximum (multiprocessor) mode. The following pin 

functions are for the minimum mode operation of 8086. 



Microprocessor and Microcontrollers 
 

M/IO -Memory/IO: 

 

This is a status line logically equivalent to S2 in maximum mode. When it is low, 

it indicates the CPU is having an I/O operation, and when it is high, it indicates that the 

CPU is having a memory operation. This line becomes active in the previous T4 and 

remains active till final T4 of the current cycle. It is tristated during local bus "hold 

acknowledge". 

 

-Interrupt Acknowledge: 

This signal is used as a read strobe for interrupt acknowledge cycles. In other 

words, when it goes low, it means that the processor has accepted the interrupt. It is active 

low during T2, T3 and TW of each interrupt acknowledge cycle. 

 

ALE-Address latch Enable: 

 

This output signal indicates the availability of the valid address on the 

address/data lines, and is connected to latch enable input of latches. This signal is active 

high and is never tristated. 

 

-Data Transmit/Receive: 

This output is used to decide the direction of data flow through the transreceivers 

(bidirectional buffers). When the processor sends out data, this signal is high and when 

the processor is receiving data, this signal is low. Logically, this is equivalent to S1 in 

maximum mode. Its timing is the same as M/I/O. This is tristated during 'hold 

acknowledge'. 

 

 

 

This signal indicates the availability of valid data over the address/data lines. It is 

used to enable the transreceivers (bidirectional buffers) to separate the data from the 

multiplexed address/data signal. It is active from the middle ofT2 until the middle of T4 

DEN is tristated during 'hold acknowledge' cycle. 

 

HOLD, HLDA-Hold/Hold Acknowledge: 

 

When the HOLD line goes high, it indicates to the processor that another master is 

requesting the bus access. The processor, after receiving the HOLD request, issues the 

hold acknowledge signal on HLDA pin, in the middle of the next clock cycle after 

completing the current bus (instruction) 



Microprocessor and Microcontrollers 
 

cycle. At the same time, the processor floats the local bus and control lines. When the 

processor detects the HOLD line low, it lowers the HLDA signal. HOLD is an 

asynchronous input, and it should be externally synchronized. 

 

S2, S1, S0 -Status Lines: 

 

These are the status lines which reflect the type of operation, being carried out by 

the processor. These become active during T4 of the previous cycle and remain active 

during T1 and T2 of the current bus cycle. The status lines return to passive state during 

T3 of the current bus cycle so that they may again become active for the next bus cycle 

during T4. Any change in these lines during T3 indicates the starting of a new cycle, and 

return to passive state indicates end of the bus cycle. These status lines are encoded in 

table 1.3 

 

 

 

This output pin indicates that other system bus masters will be prevented 

from gaining the system bus, while  the  signal is low. The    signal is 

activated by the 'LOCK' prefix instruction and remains active until the completion of 

the next instruction. This floats to tri-state off during "hold acknowledge". When the 

CPU is executing a critical instruction which requires the system bus, the LOCK 

prefix instruction ensures that other processors connected in the system will not gain 

the control of the bus. The 8086, while executing the prefixed instruction, asserts the 

bus lock signal output, which may be connected to an external bus controller. 

 

QS1, QS0-Queue Status: 

 

These lines give information about the status of the codeprefetch queue. These are 

active during the CLK cycle after which the queue operation is performed. These are 

encoded as shown in Table 1.4. 



Microprocessor and Microcontrollers 
 

 
 

ReQuest/Grant: 

 

These pins are used by other local bus masters, in maximum mode, to force the 

processor to release the local bus at the end of the processor's current  bus  cycle.  Each  

of  the  pins  is  bidirectional  with    having higher priority than  

  pins have internal pull-up resistors and may be left unconnected. The 

request! Grant sequence is as follows: 

 

 

1. A pulse one clock wide from another bus master requests the bus access to 8086. 

 

2. During T4 (current) or T1 (next) clock cycle, a pulse one clock wide from 8086 to the 

requesting master, indicates that the 8086 has allowed the local bus to float and that it will 

enter the "hold acknowledge" state at next clock cycle. The CPU's bus interface unit is 

likely to be disconnected from the local bus of the system. 

 

3. A one clock wide pulse from the another master indicates to 8086 that the 'hold' 

request is about to end and the 8086 may regain control of the local bus at the next clock 

cycle. 

 

Minimum Mode 8086 System and Timings 

In a minimum mode 8086 system, the microprocessor 8086 is operated in 

minimum mode by strapping its MN/MX* pin to logic1. In this mode, all the control 

signals are given out by the microprocessor chip itself. There is a single microprocessor in 

the minimum mode system. The remaining components in the system are latches, 

transreceivers, clock generator, memory and I/O devices. Some type of chip selection 

logic may be required for selecting memory or I/O devices, depending upon the address 

map of the system. 



Microprocessor and Microcontrollers 
 

Latches: 

 

The latches are generally buffered output D-type flip-flops, like, 74LS373 or 

8282. They are used for separating the valid address from the multiplexed address/data 

signals and are controlled by the ALE signal generated by 8086. 

 

Transreceivers 

 

Transreceivers are the bidirectional buffers and some times they are called as data 

amplifiers. They are required to separate the valid data from the time multiplexed 

address/data signal. They are controlled by two signals, namely, DEN* and DT/R*. The 

DEN* signal indicates that the valid data is available on the data bus, while DT/R 

indicates the direction of data, 

i.e. from or to the processor. 

 

Memory: 

 

The system contains memory for the monitor and users program storage. Usually, 

EPROMS are used for monitor storage, while RAMs for users program storage. 

 

IO Devices: 

 

A system may contain I/O devices for communication with the processor as well as some 

special purpose I/O devices. 

 

Clock Generator: 

 

The clock generator generates the clock from the crystal oscillator and then shapes 

it and divides to make it more precise so that it can be used as an accurate timing 

reference for the system. The clock generator also synchronizes some external signals 

with the system clock. 



Microprocessor and Microcontrollers 
 

 
 

The general system organization is shown in above fig .Since it has 20 address 

lines and 16 data lines, the 8086 CPU requires three octal address latches and two octal 

data buffers for the complete address and data separation. 

 

The working of the minimum mode configuration system can be better described 

in terms of the timing diagrams rather than qualitatively describing the operations. The 

opcode fetch and read cycles are similar. Hence the timing diagram can be categorized in 

two parts. 

 

1) Timing diagram for read cycle 

2) Timing diagram for write cycle. 

 

 

Timing diagram for Read cycle : 

 

The read cycle begins in T1 with the assertion of the address latch enable (ALE) 

signal and also M/IO* signal. During the negative going edge of this signal, the valid 

address  is  latched  on the  local  bus.  The BHE* and  A0 signals address low, high or 

both bytes. From Tl to T4, the M/IO* signal indicates a memory or I/O operation. At T2 

the address is removed from the local bus and is sent to the output. The bus is then 

tristated. The read (RD*) control signal is also activated in T2 . 



Microprocessor and Microcontrollers 
 

The read (RD) signal causes the addressed device to enable its data bus drivers. 

After RD* goes low, the valid data is available on the data bus. 

 

 

 

 

 

 

The addressed device will drive the READY line high, when the processor returns 

the read signal to high level, the addressed device will again tristate its bus drivers. 

 

Timing diagram for write cycle: 

 

A write cycle also begins with the assertion of ALE and the emission of the 

address. The M/IO* signal is again asserted to indicate a memory or I/O operation. In T2 

after sending the address in Tl the processor sends the data to be written to the addressed 

location. The data remains on the bus until middle of T4 state. The WR* becomes active 

at the beginning of T2. 



Microprocessor and Microcontrollers 
 

 
 

 

 

The BHE* and A0 signals are used to select the proper byte or bytes of memory or 

I/O word to be read or written. The M/IO*, RD* and WR* signals indicate the types of 

data transfer as specified in Table 

 

 

HOLD Response Sequence 

 

The HOLD pin is checked at the end of the each bus cycle. If it is received active 

by the processor before T4 of the previous cycle or during T1 state of the current cycle, 

the CPU activities HLDA in the next clock cycle and for the succeeding bus cycles, the 

bus will be given to another requesting master The control control of the bus is not 

regained by the processor until the requesting master does not drop the HOLD pin low. 

When the request is dropped by the requesting master, the HLDA is dropped by the 

processor at the trailing edge of the next clock as shown in fig 



Microprocessor and Microcontrollers 
 

 
 

 

 

Maximum Mode 8086 System and Timings 

In the maximum mode, the 8086 is operated by strapping the MN/MX* pin to 

ground. In this mode, the processor derives the status signals S2*, S1* and S0*. Another 

chip called bus controller derives the control signals using this status information. In the 

maximum mode, there may be more than one microprocessor in the system configuration. 

The other components in the system are the same as in the minimum mode system. The 

general system organization is as shown in the fig1.1 

 

The basic functions of the bus controller chip IC8288, is to derive control signals 

like RD* and WR* (for memory and I/O devices), DEN*, DT/R*, ALE, etc. using the 

information made available by the processor on the status lines. The bus controller chip 

has input lines S2*, S1* and S0* and CLK. These inputs to 8288 are driven by the CPU. 

It derives the outputs ALE, DEN*, DT/R*, MWTC*, AMWC*, IORC*, IOWC* and 

AIOWC*. The AEN*, IOB 

and CEN pins are specially useful for multiprocessor systems. AEN* and IOB are 

generally grounded. CEN pin is usually tied to +5V. 

 



Microprocessor and Microcontrollers 
 

INTA* pin is used to issue two interrupt acknowledge pulses to the interrupt 

controller or to an interrupting device.IORC*, IOWC* are I/O read command and I/O 

write command signals respectively. These signals enable an IO interface to read or write 

the data from or to the addressed port. The MRDC*, MWTC* are memory read command 

and memory write command signals respectively and may be used as memory read and 

write signals. All these command signals instruct the memory to accept or send data from 

or to the bus. For both of these write command signals, the advanced signals namely 

AIOWC* and AMWTC* are available. They also serve the same purpose, but are 

activated one clock cycle earlier than the IOWC* and MWTC* signals, respectively. The 

maximum mode system is shown in fig. 1.1. 

 

The maximum mode system timing diagrams are also divided in two portions as 

read (input) and write (output) timing diagrams. The address/data and address/status 

timings are similar to the minimum mode. ALE is asserted in T1, just like minimum 

mode. The only difference lies in the status signals used and the available control and 

advanced command signals. The fig. 1.2 shows the maximum mode timings for the read 

operation while the fig. 1.3 shows the same for the write operation. 

 

 

Fig. 1.2 Memory Read Timing in Maximum Mode 



Microprocessor and Microcontrollers 
 

 

 

 

 

 

 

 

 
 

Fig. 1.3 Memory Write Timing in Maximum Mode 



Microprocessor and Microcontrollers 
 



Microprocessor and Microcontrollers 
 



Microprocessor and Microcontrollers 
 
 

I/O Interface 
➢ 8255 PPI 

➢ Various Modes of Operation and Interfacing to 8086 

➢ D/A and A/D Converter 

➢ Memory Interfacing to 8086 

➢ Interrupt Structure of 8086 

➢ Interrupt Vector Table, Interrupt Service Routine 

➢ architecture of 8259 keyboard and display controller.



Microprocessor and Microcontrollers 
 

I/O Interface 
 

Introduction: 
 

Any application of a microprocessor based system requires the transfer of data 

between external circuitry to the microprocessor and microprocessor to the external 

circuitry. User can give information to the microprocessor based system using keyboard 

and user can see the result or output information from the microprocessor based system 

with the help of display device. The transfer of data between keyboard and 

microprocessor, and microprocessor and display device is called input/output data 

transfer or I/O data transfer. This data transfer is done with the help of I/O ports. 
 

Input port: 
 
 

 
 

It is used to read data from the input device such as keyboard. The simplest form 

of input port is a buffer. The input device is connected to the microprocessor through 

buffer, as shown in the fig.1. This buffer is a tri-state buffer and its output is available 

only when enable signal is active. When microprocessor wants to read data from the 

input device (keyboard), the control signals from the microprocessor activates the buffer 

by asserting enable input of the buffer. Once the buffer is enabled, data from the input 

device is available on the data bus. Microprocessor reads this data by initiating read 

command. 



Microprocessor and Microcontrollers 
 

Output port: 
 
 

 

 
SIt is used to send data to the output device such as display from the 

microprocessor. The simplest form of output port is a latch. The output device is 

connected to the microprocessor through latch, as shown in the fig.2. When 

microprocessor wants to send data to the output device is puts the data on the data bus 

and activates the clock signal of the latch, latching the data from the data bus at the 

output of latch. It is then available at the output of latch for the output device. 

Serial and Parallel Transmission: 
 

In telecommunications, serial transmission is the sequential transmission of 

signal elements of a group representing a character or other entity of data. Digital serial 

transmissions are bits sent over a single wire, frequency or optical path sequentially. 

Because it requires less signal processing and less chance for error than parallel 

transmission, the transfer rate of each individual path may be faster. This can be used 

over longer distances as a check digit or parity bit can be sent along it easily. 

In telecommunications, parallel transmission is the simultaneous transmission of 

the signal elements of a character or other entity of data. In digital communications, 

parallel transmission is the simultaneous transmission of related signal elements over 

two or more separate paths. Multiple electrical wires are used which can transmit 

multiple bits simultaneously, which allows for higher data transfer rates than can be 

achieved with serial transmission. This method is used internally within the computer, 

for example the internal buses, and sometimes externally for such things as printers, The 

major issue with this is "skewing" because the wires in parallel data transmission have 

slightly different properties (not intentionally) so some bits may arrive before others, 

which may corrupt 

http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Transmission_(telecommunications)
http://en.wikipedia.org/wiki/Signal_element
http://en.wikipedia.org/wiki/Signal_element
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Parity_bit
http://en.wikipedia.org/wiki/Parallel_transmission
http://en.wikipedia.org/wiki/Signalling_(telecommunication)
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Digital


Microprocessor and Microcontrollers 
 

the message. A parity bit can help to reduce this. However, electrical wire parallel data 

transmission is therefore less reliable for long distances because corrupt transmissions 

are far more likely. 

Interrupt driven I/O: 
 

In this technique, a CPU automatically executes one of a collection of special 

routines whenever certain condition exists within a program or a processor system. 

Example CPU gives response to devices such as keyboard, sensor and other components 

when they request for service. When the CPU is asked to communicate with devices, it 

services the devices. Example each time you type a character on a keyboard, a keyboard 

service routine is called. It transfers the character you typed from the keyboard I/O port 

into the processor and then to a data buffer in memory. 
 

The interrupt driven I/O technique allows the CPU to execute its main program 

and only stop to service I/O device when it is told to do so by the I/O system as shown in 

fig.3. This method provides an external asynchronous input that would inform the 

processor that it should complete whatever instruction that is currently being executed 

and fetch a new routine that will service the requesting device. Once this servicing is 

completed, the processor would resume exactly where it left off. 
 

 

 
An analogy to the interrupt concept is in the classroom, where the professor serves 

as CPU and the students as I/O ports. The classroom scenario for this interrupt analogy 

will be such that the professor is busy in writing on the blackboard and delivering his 

lecture. 

The student raises his finger when he wants to ask a question (student requesting for 

service). The professor then completes his sentence and acknowledges student‟s 

request by saying “YES” (professor acknowledges the interrupt request). After 

acknowledgement from the professor, student asks the question and professor gives 

answer to the question (professor services the interrupt). After that professor continues 

its remaining lecture form where it was left. 



Microprocessor and Microcontrollers 
 

PIO 8255: 
 

The parallel input-output port chip 8255 is also called as 

programmableperipheral input-output port. The Intel‟s 8255 are designed for use with 

Intel‟s 8-bit, 16-bit and higher capability microprocessors. It has 24 input/output 

lineswhich may be individually programmed in two groups of twelve lines each, orthree 

groups of eight lines. 

 
The two groups of I/O pins are named as Group A and Group B. Each of thesetwo 

groups contains a subgroup of eight I/O lines called as 8-bit port and anothersubgroup of 

four lines or a 4-bit port. Thus Group A contains an 8-bit port Aalong with a 4-bit port C 

upper. 
 
 

 
 

The port A lines are identified by symbols PA0-PA7 while the port C lines are 

identified as PC4-PC7 similarly. Group B contains an 8-bit port B, containing lines PB0- 

PB7 and a 4-bit port C with lower bits PC0-PC3. The port C upper and port C lower can be 

used in combination as an 8-bit port C. Both the port Cs is assigned the same address. 

Thus one may have either three 8-bit I/O ports or two 8-bit and two 4-bit I/O ports from 

8255. All of these ports can function independently either as input or as output ports. 

This can be achieved by programming the bits of an internal register of 8255 called as 

control word register (CWR). The internal block diagram and the pin configuration of 

8255 are shown in figs. 



Microprocessor and Microcontrollers 
 

The 8-bit data bus buffer is controlled by the read/write control logic. The read/write 

control logic manages all of the internal and external transfer of both data and control 

words. RD, WR, A1, A0 and RESET are the inputs, provided by the microprocessor to 

READ/WRITE control logic of 8255. The 8-bit, 3-state bidirectional buffer is used to 

interface the 8255 internal data bus with the external system data bus. This buffer 

receives or transmits data upon the execution of input or output instructions by the 

microprocessor. The control words or status information is also transferred through the 

buffer. 

 
Pin Diagram of 8255A 

 

 

The pin configuration of 8255 is shown in fig. 
 

The port A lines are identified by symbols PA0-PA7 while the port C lines are 

Identified as PC4-PC7. Similarly, Group B contains an 8-bit port B, containing 

lines PB0-PB7 and a 4-bit port C with lower bits PC0- PC3. The port C upper 

and port C lower can be used in combination as an 8-bit port C. 

  Both the port C is assigned the same address. Thus one may have either three 

8-bit I/O ports or two 8-bit and two 4-bit ports from 8255. All of these ports 

can function independently either as input or as output ports. This can be 



Microprocessor and Microcontrollers 
 

achieved by programming the bits of an internal register of 8255 called as 

control word register (CWR). 

The 8-bit data bus buffer is controlled by the read/write control logic. The read/write 

control logic manages all of the internal and external transfers of both data and 

control words. 

RD,WR, A1, A0 and RESET are the inputs provided by the microprocessor to the 

READ/ WRITE control logic of 8255. The 8-bit, 3-state bidirectional buffer is used to 

interface the 8255 internal data bus with the external system data bus. 

This buffer receives or transmits data upon the execution of input or output 

instructions by the microprocessor. The control words or status information is also 

transferred through the buffer. 

 
 

The signal description of 8255 is briefly presented as follows: 

 
PA7-PA0: These are eight port A lines that acts as either latched output or buffered 

input lines depending upon the control word loaded into the control word register. 

PC7-PC4: Upper nibble of port C lines. They may act as either output latches or input 

buffers lines. 

This port also can be used for generation of handshake lines in mode1 or mode2. 

PC3-PC0: These are the lower port C lines; other details are the same as PC7-PC4 
lines. 

PB0-PB7: These are the eight port B lines which are used as latched output lines or 
buffered input lines in the same way as port A. 

RD: This is the input line driven by the microprocessor and should be low to indicate 
read operation to 8255. 

WR: This is an input line driven by the microprocessor. A low on this line indicates 
write operation. 

CS: This is a chip select line. If this line goes low, it enables the 8255 to respond to RD 

and WR signals, otherwise RD and WR signal are neglected. 

D0-D7: These are the data bus lines those carry data or control word to/from the 

microprocessor. 

RESET:Logic high on this line clears the control word register of 8255. All ports are 
set as input ports by default after reset. 

A1-A0: These are the address input lines and are driven by the microprocessor. 

These lines A1-A0 with RD, WR and CS from the following operations for 8255. These 

address lines are used for addressing any one of the four registers, i.e. three ports 

and a control word register as given in table below. 

 
 

In case of 8086 systems, if the 8255 is to be interfaced with lower order data bus, 

the A0 and A1 pins of 8255 are connected with A1 and A2 respectively. 



Microprocessor and Microcontrollers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Modes of Operation of 8255 

 
These are two basic modes of operation of 8255. I/O mode and Bit Set-Reset mode 

(BSR). 

In I/O mode, the 8255 ports work as programmable I/O ports, while in BSR mode only 

port C (PC0-PC7) can be used to set or reset its individual port bits. 

Under the I/O mode of operation, further there are three modes of operation of 8255, 

so as to support different types of applications, mode 0, mode 1 and mode 2. 

BSR Mode: In this mode any of the 8-bits of port C can be set or reset depending on D0 

of the control word. The bit to be set or reset is selected by bit select flags D3, D2 and D1 

of the CWR as given in table. 

 
I/O Modes: 

 
a) Mode 0 (Basic I/O mode): This mode is also called as basic input/output Mode. This 

mode provides simple input and output capabilities using each of the threeports. Data 

can be simply read from and written to the input and output portsrespectively, after 

appropriate initialization. 



Microprocessor and Microcontrollers 
 

 
 
 

The salient features of this mode are as listed below: 

 
1. Two 8-bit ports (port A and port B) and two 4-bit ports (port C upper and lower) 

are available. The two 4-bit ports can be combined used as a third 8-bit port. 

2. Any port can be used as an input or output port. 

3. Output ports are latched. Input ports are not latched. 

4. A maximum of four ports are available so that overall 16 I/O configurations 

arepossible. 

 
All these modes can be selected by programming a register internal to 8255known as 

CWR. 

The control word register has two formats. The first format is valid for I/O modesof 

operation, i.e. modes 0, mode 1 and mode 2 while the second format is validfor bit 

set/reset (BSR) mode of operation. 

 
 
 

These formats are shown in followingfig. 
 
 
 



Microprocessor and Microcontrollers 
 

 
 

 

 
 
 
 
 

 
 

 

b) Mode 1: ( Strobed input/output mode ) In this mode the handshaking control the 

input and output action of the specified port. Port C lines PC0-PC2, provide strobe 

orhandshake lines for port B. This group which includes port B and PC0-PC2 is called 

asgroup B for Strobed data input/output. Port C lines PC3-PC5 provides strobe lines for 

portA.This group including port A and PC3-PC5 from group A. Thus port C is utilized 

forgenerating handshake signals. 



Microprocessor and Microcontrollers 
 

The salient features of mode 1 are listed as follows: 

 
1. Two groups – group A and group B are available for strobed data transfer. 

2. Each group contains one 8-bit data I/O port and one 4-bit control/data port. 

3. The 8-bit data port can be either used as input and output port. The inputs 

andoutputs both are latched. 

4. Out of 8-bit port C, PC0-PC2 are used to generate control signals for port B 

andPC3-PC5 are used to generate control signals for port A. the lines PC6, PC7 

may be used as independent data lines. 

 
 

The control signals for both the groups in input and output modes areexplained as 

follows: 

 
Input control signal definitions (mode 1): 

 
• STB (Strobeinput) – If this lines falls to logic low level, the data available at 8- 

bit input port is loaded into input latches. 

• IBF (Input buffer full) – If this signal rises to logic 1, it indicates that data 

hasbeen loaded into latches, i.e. it works as an acknowledgement. IBF is set 

by a lowon STB and is reset by the rising edge of RD input. 

• INTR (Interruptrequest) – This active high output signal can be used 

tointerrupt the CPU whenever an input device requests the service. INTR is 

set by ahigh STBpin and a high at IBF pin. INTE is an internal flag that can be 

controlledby the bit set/reset mode of either PC4 (INTEA) or PC2 (INTEB) as 

shown in fig. 

• INTR is reset by a falling edge of RD input. Thus an external input device can 

berequest the service of the processor by putting the data on the bus and 

sending thestrobe signal. 

 
Output control signal definitions (mode 1): 

 
• OBF (Output buffer full) – This status signal, whenever falls to low, 

indicatesthat CPU has written data to the specified output port. The OBF flip- 

flop will beset by a rising edge of WR signal and reset by a low going edge at 

the ACKinput. 

• ACK (Acknowledgeinput) – ACK signal acts as an acknowledgement to begiven 

by an output device. ACK signal, whenever low, informs the CPU that thedata 

transferred by the CPU to the output device through the port is received 

bythe output device. 

• INTR (Interruptrequest) – Thus an output signal that can be used to 

interruptthe CPU when an output device acknowledges the data received 

from the CPU.INTR is set when ACK, OBF and INTE are 1. It is reset by a 



Microprocessor and Microcontrollers 
 

fallingedge on WRinput. The INTEA and INTEB flags are controlled by the bit 

set-reset mode ofPC6 and PC2 respectively. 
 

 



Microprocessor and Microcontrollers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

c) Mode 2 (Strobed bidirectional I/O): This mode of operation of 8255 is alsocalled as 

strobed bidirectional I/O. This mode of operation provides 8255 with additional features for 

communicating with a peripheral device on an 8-bit databus. Handshaking signals are 

provided to maintain proper data flow andsynchronization between the data transmitter 

and receiver. The interruptgeneration and other functions are similar to mode 1. 

 
 

In this mode, 8255 is a bidirectional 8-bit port with handshake signals. The Rdand WR signals 

decide whether the 8255 is going to operate as an input port oroutput port. 

 
 

The Salient features of Mode 2 of 8255 are listed as follows: 

 
1. The single 8-bit port in group A is available. 

2. The 8-bit port is bidirectional and additionally a 5-bit control port is available. 

3. Three I/O lines are available at port C.( PC2 – PC0 ) 

4. Inputs and outputs are both latched. 



Microprocessor and Microcontrollers 
 

5. The 5-bit control port C (PC3-PC7) is used for generating / accepting 

handshakesignals for the 8-bit data transfer on port A. 

 
 

Control signal definitions in mode 2: 
 

  INTR – (Interrupt request) As in mode 1, this control signal is active high and 

isused to interrupt the microprocessor to ask for transfer of the next data 

byteto/from it. This signal is used for input (read) as well as output (write) 

operations. 

Control Signals for Output operations: 

OBF (Output buffer full) – This signal, when falls to low level, indicates that 

theCPU has written data to port A. 

  ACK (Acknowledge) This control input, when falls to logic low level, 

Acknowledges that the previous data byte is received by the destination and 

nextbyte may be sent by the processor. This signal enables the internal tristate 

buffersto send the next data byte on port A. 

  INTE1 ( A flag associated with OBF ) This can be controlled by bit set/resetmode 

with PC6. 

 
Control signals for input operations: 

 
  STB (Strobe input)a low on this line is used to strobe in the data into the 

inputLatches of 8255. 

  IBF (Input buffer full) when the data is loaded into input buffer, this signal risesto 

logic „1‟. This can be used as an acknowledge that the data has been receivedby 

the receiver. 

  The waveforms in fig show the operation in Mode 2 for output as well as 

inputport. 

Note: WR must occur before ACK and STB must be activated before RD. 

 



Microprocessor and Microcontrollers 
 

  The following fig shows a schematic diagram containing an 8-bit 

bidirectionalport, 5-bit control port and the relation of INTR with the control 

pins. Port B caneither be set to Mode 0 or 1 with port A( Group A ) is in Mode 

2. 

Mode 2 is not available for port B. The following fig shows the control word. 

The INTR goes high only if IBF, INTE2, STB and RD go high or OBF, 

INTE1, ACK and WR go high. The port C can be read to know the status of 

theperipheral device, in terms of the control signals, using the normal 

I/Oinstructions. 
 

 



Microprocessor and Microcontrollers 
 

Interfacing Analog to Digital Data Converters: 
 

➢ In most of the cases, the PIO 8255 is used for interfacing the analog to digital 

converters with microprocessor. 

➢ We have already studied 8255 interfacing with 8086 as an I/O port, in previous section. 

This section we will only emphasize the interfacing techniques of analog to digital 

converters with 8255. 

➢ The analog to digital converters is treated as an input device by the microprocessor 

that sends an initializing signal to the ADC to start the analogy to digital data 

conversation process. The start of conversation signal is a pulse of a specific duration. 
 

➢ The process of analog to digital conversion is a slow 

➢ Process and the microprocessor have to wait for the digitaldata till the conversion is 

over. After the conversion isover, the ADC sends end of conversion EOC signal toinform 

themicroprocessor that the conversion is over andthe result is ready at the output 

buffer of the ADC. Thesetasks of issuing an SOC pulse to ADC, reading EOC signalfrom 

the ADC and reading the digital output of the ADCare carried out by the CPU using 

8255 I/O ports. 

➢ The time taken by the ADC from the active edge of SOCpulse till the active edge of EOC 
signal is called as theconversion delay of the ADC. 

➢ It may range anywhere from a few microseconds in caseof fast ADC to even a few 
hundred milliseconds in case ofslow ADCs. 

➢ The available ADC in the market use different conversiontechniques for conversion of 

analog signal to digitals.Successive approximation techniques and dual 

slopeintegration techniques are the most popular techniquesused in the integrated 

ADC chip. 

➢ General algorithm for ADC interfacing contains thefollowing steps: 

➢ Ensure the stability of analog input, applied to the ADC. 

➢ Issue start of conversion pulse to ADC 

➢ Read end of conversion signal to mark the end ofconversion processes. 

➢ Read digital data output of the ADC as equivalent digitaloutput. 

➢ Analog input voltage must be constant at the input of theADC right from the start of 

conversion till the end of theconversion to get correct results. This may be ensured by 

asample and hold circuit which samples the analog signaland holds it constant for 

specific time duration. Themicroprocessor may issue a hold signal to the sample 

andhold circuit. 

➢ If the applied input changes before the completeconversion process is over, the digital 
equivalent of theanalog input calculated by the ADC may not be correct. 



Microprocessor and Microcontrollers 
 

ADC 0808/0809: 
 

➢ The analog to digital converter chips 0808 and 0809 are 8-bit CMOS, 

successive approximation converters. This technique is one of the fast 

techniques for analog to digital conversion. The conversion delay is 100µs at a 

clock frequency of 640 KHz, which is quite low as compared to other 

converters. These converters do not need any external zero or full scale 

adjustments as they are already taken care of by internal circuits. 

➢ These converters internally have a 3:8 analog multiplexer so that at a time 

eight different analog conversion by using address lines - ADD A, ADD B, 

ADD C, as shown. Using these address inputs, multichannel data acquisition 

system can be designed using a single ADC. The CPU may drive these lines 

using output port lines in case of multichannel applications. In case of 

single input applications, these may be hardwired to select the proper 

input. 

➢ There are unipolar analog to digital converters, i.e. they are able to convert 

only positive analog input voltage to their digital equivalent. These chips do 

not contain any internal sample and hold circuit. 

➢ If one needs a sample and hold circuit for the conversion of fast signal into 

equivalent digital quantities, it has to be externally connected at each of the 

analog inputs. 

 
 

Fig (1) and Fig (2) show the block diagrams and pin diagrams for ADC 0808/0809. 

 
Table.1 

 

Analog I/P selected 
Address lines 

C B A 

I/P 0 0 0 0 

I/P 1 0 0 1 

I/P 2 0 1 0 

I/P 3 0 1 1 

I/P 4 1 0 0 

I/P 5 1 0 1 

I/P 6 1 1 0 

I/P 7 1 1 1 



Microprocessor and Microcontrollers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1 Block Diagram of ADC 0808/0809 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Pin Diagram of ADC 0808/0809 



Microprocessor and Microcontrollers 
 

Some Electrical Specifications Of The ADC 0808/0809 Are Given In Table.2. 
 

Table.2 
 

 
The Timing Diagram Of Different Signals Of Adc0808 Is Shown In Fig.3 

 

 

Fig.3 Timing Diagram Of ADC 0808. 



Microprocessor and Microcontrollers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Interfacing ADC0808 with 8086 
 
 

Interfacing Digital To Analog Converters: 
 

The digital to analog converters convert binary numbers into their analog 

equivalent voltages. The DAC find applications in areas like digitally controlled gains, 

motor speed controls, programmable gain amplifiers, etc. 
 

DAC0800 8-bit Digital to Analog Converter 
 

The DAC 0800 is a monolithic 8-bit DAC 

manufactured by National Semiconductor. 

It has settling time around 100ms and can operate 
on 

a range of power supply voltages i.e. from 4.5V to +18V. 

Usually the supply V+ is 5V or +12V. 

The V-pin can be kept at a minimum of -12V. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Pin Diagram of DAC 0800 



Microprocessor and Microcontrollers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

    Interfacing DAC0800 with 8086 

Keyboard Interfacing 
 

➢ In most keyboards, the key switches are connected in a matrix of Rows and Columns. 

➢ Getting meaningful data from a keyboard requires three major tasks: 
 

1. D e t e c t a k e y p r e s s 

2. D e b o u n c e t h e k e y p r e s s . 

3. Encode the keypress (produce a standard code for the pressed key). 

 
Logic „0‟ is read by the microprocessor when the key is pressed. 

 
Key Debounce: 

 
 

Whenever a mechanical push-bottom is pressed or released once,the mechanical 

components of the key do not change the positionsmoothly; rather it generates a transient 

response. These may be interpreted as the multiple pressures and responded accordingly. 



Microprocessor and Microcontrollers 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The rows of the matrix are connected to four output Port lines, &columns are 

connected to four input Port lines. 

When no keys are pressed, the column lines are held high by the pull-up resistors 

connected to +5v. 

Pressing a key connects a row & a column. 

To detect if any key is pressed is to output 0‟s to all rows & then check columns 

to see it a pressed key has connected a low (zero) to a column. 

Once the columns are found to be all high, the program enters another loop, 

which waits until a low appears on one of the columns i.e indicating a key press. 

A simple 20/10 msec delay is executed to debounce task. 

After the debounce time, another check is made to see if the key is still pressed. If 

the columns are now all high, then no key is pressed & the initial detection was 

caused by a noise pulse. 

To avoid this problem, two schemes are suggested: 

1. Use of Bistablemultivibrator at the output of the key to debounce it. 

2. The microprocessor has to wait for the transient period (at least for 10 ms), 

so that the transient response settles down and reaches a steady state. 

 

If any of the columns are low now, then the assumption is made that it was a valid 

key press. 



Microprocessor and Microcontrollers 
 

  The final task is to determine the row & column of the pressed key &convert this 

information to Hex-code for the pressed key. 

  The 4-bit code from I/P port & the 4-bit code from O/P port (row &column) are 

converted to Hex-code. 

 

 

Interfacing 4x4 keyboard 

 

 
Display Interface 

 



Microprocessor and Microcontrollers 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interfacing multiplexed 7-segment display 



Microprocessor and Microcontrollers 
 

Interfacing with Advanced devices 

 
 MEMORY AND I/O INTERFACING 

(Ref: Interfacing through Microprocessors by K. Subba Rao, Hi-tech publishers, P. 163-166) 
 

 I/O Interface 

Any application of a microprocessor system requires the 
transfer of data between microprocessor and external environment and also with in the microprocessor. 
This is known as Input/Output. There are three different ways that the data transfer can take place. They 
are 

 

(1) Program controlled I/O 

(2) Interrupt Program Controlled I/O 

(3) Hardware controlled I/O 

 
In program controlled I/O data transfer scheme the transfer of 

data is completely under the control of the microprocessor program. In this case an I/O operation takes 
place only when an I/O transfer instruction is executed. 

In an interrupt program controlled I/O an external device 
indicates directly to the microprocessor its readiness to transfer data by a signal at an interrupt input of 
the microprocessor. When microprocessor receives this signal the control is transferred to ISS (Interrupt 
service subroutine) which performs the data transfer. 

Hardware controlled I/O is also known as direct memory 
access DMA. In this case the data transfer takes place directly between an I/O device and memory but 
not through microprocessors. Microprocessor only initializes the process of data transfer by indicating 
the starting address and the number of words to be transferred. 

The instruction .set of any microprocessor contains instructions 
that transfer information to an I/O device and to read information from an I/O device. In 8086 we have 
IN, OUT instructions for this purpose. OUT instruction transfers information to an I/O device where as 
IN instruction is used to read information from an I/O device. Both the instructions perform the data 
transfer using accumulator AL or AX. The I/O address is stored in register DX. 

The port number is specified along with IN or OUT instruction. 
The external I/O interface decodes to find the address of the I/O device. The 8 bit fixed port number 
appears  on  address  bus  A0  -  A7  with  A8  -  A15  all  zeros.  The  address  connections  above  A15  

are 
undefined for an I/O instruction. The 16 bit variable port number appears on address connections A0 - 

A15. The above notation indicates that first 256 I/O port addresses 00 to FF are accessed by both the 

fixed and variable I/O instructions. The I/O addresses from 0000 to FFFF are accessed by the variable 
I/O address. 

I/O devices can be interfaced to the microprocessors using two 
methods. They are I/O mapped I/O and memory mapped I/O. The I/O mapped I/O is also known as 
isolated I/O or direct I/O. In I/O mapped I/O the IN and OUT instructions transfer data between the 
accumulator or memory and I/O device. In memory mapped I/O the instruction that refers memory can 
perform the data transfer. 



Microprocessor and Microcontrollers 
 

I/O mapped I/O is the most commonly used I/O transfer technique. In this method I/O locations are 
placed separately from memory. The addresses for isolated I/O devices are separate from memory. 
Using this method user can use the entire memory. This method allows data transfer only by using 

instructions IN, OUT. The pins M/ IO and W/R are used to indicate I/O read or an I/O write operations. 
The signals on these lines indicate that the address on the address bus is for I/O devices. 

Memory mapped I/O does not use the IN, OUT instruction it 
uses only the instruction that transfers data between microprocessor and memory. A memory mapped 
I/O device is treated as memory location. The disadvantage in this system is the overall memory is 
reduced. The advantage of this system is that any memory transfer instruction can be used for data 
transfer and control signals like I/O read and I/O write are not necessary which simplify the hardware. 

 

 Memory interfacing 

 

are two main types of memory. 

 
Memory is an integral part of a microcomputer system. There 

(i) Read only memory (ROM): As the name indicates this memory is available only for 
reading purpose. The various types available under this category are PROM, EPROM, 
EEPROM which contain system software and permanent system data. 

(ii) Random Access memory (RAM): This is also known as Read Write Memory. It is a 
volatile memory. RAM contains temporary data and software programs generally for 
different applications. 

 
While executing particular task it is necessary to access 

memory to get instruction codes and data stored in memory. Microprocessor initiates the necessary 
signals when read or write operation is to be performed. Memory device also requires some signals to 
perform read and write operations using various registers. To do the above job it is necessary to have a 
device and a circuit, which performs this task is known as interfacing device and as this is involved with 
memory it-is known as memory interfacing device. The basic concepts of memory interfacing involve 
three different tasks. The microprocessor should be able to read from or write into the specified register. 
To do this it must be able to select the required chip, identify the required register and it must enable the 
appropriate buffers. 

Any memory device must contain address lines and Input, 
output lines, selection input, control input to perform read or write operation. All memory devices have 
address inputs that select memory location with in the memory device. These lines are labeled as 

AO .......... AN. The number of address lines indicates the total memory capacity of the memory device. A 

1K memory requires 10 address lines A0-A9. Similarly a 1MB requires 20 lines A0-A19 (in the case of 
8086). The memory devices may have separate I/O lines or a common set of bidirectional I/O lines. 
Using these lines data can be transferred in either direction. Whenever output buffer is activated the 
operation is read whenever input buffers are activated the operation is write. These lines are labelled 



Microprocessor and Microcontrollers 
 

as I/O,......... I/On  or DO .................... Dn. The size of a memory location is dependent upon the number of 

data bits. If the number of data lines are eight D0 - D7 then 8 bits or 1 byte of data can be stored in each 

location. Similarly if numbers of data bits are 16 (D0 - D15) then the memory size is 2 bytes. For 

example 2K x 8 indicates there  are 2048 memory locations and each memory location can store 8 bits 
of data. 

Memory devices may contain one or more inputs which are 

used to select the memory device or to enable the memory device. This pin is denoted by CS (Chip 

select) or CE (Chip enable). When this pin is at logic '0' then only the memory device performs a read 

or a write operation. If this pin is at logic ‘1’ the memory chip is disabled. If there are more than one 

CS input then all these pins must be activated to perform read or write operation. 

All memory devices will have one or more control inputs. 

When ROM is used we find OE output enable pin which allows data to flow out of the output data pins. 

To perform this task both CS and OE must be active. A RAM contains one or two control inputs. 
     

They are R / W or RD and WR . If there is only one input R/ W then it performs read 

operation when R/ W pin is at logic 1. If it is at logic 0 it performs write operation. Note that this is 

possible only when CS is also active. 

 

 Memory Interface using RAMS, EPROMS and EEPROMS 

(Ref: Advanced Microprocessors and Peripherals by A.K. Ray & K.M. Bhurchandi, McGraw-Hill, 2
nd 

Edition.P.158- 164) 

 

Semiconductor Memory Interfacing: 

Semiconductor memories are of two types, viz. RAM (Random Access Memory) and ROM (Read Only 
Memory). 

 

Static RAM Interfacing: 

The semiconductor RAMs are of broadly two types-static RAM and dynamic RAM. The 
semiconductor memories are organised as two dimensional arrays of memory locations. For example, 
4K x 8 or 4K byte memory contains 4096 locations, where each location contains 8-bit data and only 
one of the 4096 locations can be selected at a time. Obviously, for addressing 4K bytes of memory, 
twelve address lines are required. In general, to address a memory location out of N memory locations 

, we will require at least n bits of address, i.e. n address lines where n = Log2 N. Thus if the 

microprocessor has n address lines, then it is able to address at the most N locations of memory, where 

2n = N. However, if out of N locations only P memory locations are to be interfaced, then the least 
significant p address lines out of the available n lines can be directly connected from the microprocessor 
to the memory chip while the remaining (n-p) higher order address lines may be used for address 
decoding (as inputs to the chip selection logic). The memory address depends upon the 

hardware circuit used for decoding the chip select ( CS ). The output of the decoding circuit is 
 

connected with the CS pin of the memory chip. The general procedure of static memory interfacing 
with 8086 is briefly described as follows: 

1. Arrange the available memory chips so as to obtain 16-bit data bus width. The upper 8-bit 
bank is called ‘odd address memory bank’ and the lower 8-bit bank is called ‘even address memory 
bank’. 

2. Connect available memory address lines of memory chips with those of the microprocessor 

and also connect the memory RD and WR inputs to the corresponding processor control signals. 
Connect the 16-bit data bus of the memory bank with that of the microprocessor 8086. 

 

3. The remaining address lines of the microprocessor, BHE and A0 are used for decoding the 

required chip select signals for the odd and even memory banks. CS of memory is derived from the 
O/P of the decoding circuit. 



Microprocessor and Microcontrollers 
 

As a good and efficient interfacing practice, the address map of the system should be 
continuous as far as possible, i.e. there should be no windows in the map. A memory location should 
have a single address corresponding to it, i.e. absolute decoding should be preferred, and minimum 
hardware should be used for decoding. In a number of cases, linear decoding may be used to minimise 
the required hardware.Let us now consider a few example problems on memory interfacing with 8086. 

 

 



Microprocessor and Microcontrollers 
 

 



Microprocessor and Microcontrollers 
 

 



Microprocessor and Microcontrollers 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Microprocessor and Microcontrollers 
 

UNIT –IV 

Introdution to  Microcontrollers 

Microprocessor Microcontroller 

Arithmetic and logic 

unit 

 
Accumulator 

Working Registers 

 

ProgramCounter StackPointer 

 

ClockCircuit Interruptcircuit 

 

ALU Timer/ IOPorts 

Counter 
Accumulator 

Interrupt 
Registers 

Internal Circuits 

InternalRAM ROM 
 

StackPointer Clock 

 
Program Counter 

Block diagram of microprocessor Block diagram of microcontroller 

Microprocessor contains ALU, General purpose 

registers, stack pointer, program counter, clock 

timing circuit, interrupt circuit 

Microcontroller contains the circuitry of 

microprocessor, and in addition it has built in ROM, 

RAM, I/O Devices, Timers/Counters etc. 

It has many instructions to move data between 

memory and CPU 

It has few instructions to move data between memory 

and CPU 

Few bit handling instruction It has many bit handling instructions 

Less number of pins are multifunctional More number of pins are multifunctional 

Single memory map for data and code 

(program) 

Separate memory map for data and code (program) 

Access time for memory and IO are more Less access time for built in memory and IO. 

Microprocessor based system requires 

additionalhardware 

It requires less additional hardwares 

More flexible in the design point of view Less flexible since the additional circuits which is 

residing inside the microcontroller is fixed for a 

particular microcontroller 

Large number of instructions with flexible 

addressing modes 

Limited number of instructions with few 

addressingmodes 



Microprocessor and Microcontrollers 
 

RISC AND CISC CPU ARCHITECTURES 

Microcontrollers with small instruction set are called reduced instruction set computer (RISC) 

machines and those with complex instruction set are called complex instruction set computer 

(CISC). Intel 8051 is an example of CISC machine whereas microchip PIC 18F87X is an 

example of RISC machine. 
 

RISC CISC 

Instruction takes one or two cycles Instruction takes multiple cycles 

Only load/store instructions are used to access 

memory 

In additions to load and store instructions, memory 

access is possible with other instructions also. 

Instructions executed by hardware Instructions executed by the micro program 

Fixed format instruction Variable format instructions 

Few addressing modes Many addressing modes 

Few instructions Complex instruction set 

Most of the have multiple register banks Single register bank 

Highly pipelined Less pipelined 

Complexity is in the compiler Complexity in the microprogram 



Microprocessor and Microcontrollers 
 

HARVARD & VON- NEUMANN CPU ARCHITECTURE 

Von-Neumann (Princeton architecture) Harvard architecture 

 

 

 
 

CPU 

 

 
Data 

 

 

 

 

Address Bus 

 

Program 

  

Data 

 

CPU 
AddressBus 

 
Data 

 
Address Bus 

  
Data 

Memory Memory 

 
Data 

 
Program 

Memory Memory 

Von-Neumann (Princeton architecture) Harvard architecture 

It uses single memory 

instructions anddata. 

space for both It has separate program memory and data memory 

It is not possible to fetch instruction code and data Instruction code and data 

simultaneously 

can be Fetche

d 

Execution of instruction takes more machine cycle Execution of instruction takes less  machine cycle 

Uses CISC architecture Uses RISC architecture 

Instruction pre-fetching is a main feature Instruction parallelism is a main feature 

Also known as control flow or control driven 

computers 

Also known as data flow 

computers 

or data Driven 

Simplifies the chip design because of single memory 

space 

Chip design is complex due to separate memory 

space 

Eg. 8085, 8086, MC6800 Eg. General purpose microcontrollers, special DSP 

chips etc. 



Microprocessor and Microcontrollers 
 

COMPUTER SOFTWARE 

 

A set of instructions written in a specific sequence for the computer to solve a specific task is called a 

program and software is a collection of such programs. 

The program stored in the computer memory in the form of binary numbers is called machine 

instructions. The machine language program is called object code. 

An assembly language is a mnemonic representation of machine language. Machine language and 

assembly language are low level languages and are processor specific. 

The assembly language program the programmer enters is called source code. The source code 

(assembly language) is translated to object code (machine language) using assembler. 

Programs can be written in high level languages such as C, C++ etc. High level language will be 

converted to machine language using compiler or interpreter. Compiler reads the entire program and 

translate into the object code and then it is executed by the processor. Interpreter takes one statement of 

the high level language as input and translate it into object code and then executes. 

CLASSIFICATION OF MICROCONTROLLER 

Microcontrollers are divided by their bits, memory architecture, memory device and instruction set 

CLASSIFICATION ACCORDING TO BITS 

8 bit- In this if the internal bus is 8 bit then the ALU performs arithmetic and logic operations. Examples are 

8051/8031/ pic1x. 

16 bit- this microcontroller performance is greater compared to 8-bit. 16 bit can use 16 bit for its operations 

were as in 8-bit it is only 8-bit examples are 8051 extended, pic2x 

32-bit - it uses 32 bit to perform its operations these are used in medical devices and in control systems PIC3X 

is an example 

CLASSIFICATION ACCORDING TO MEMORY DEVICES 

Embedded memory microcontroller – This is a type of microcontroller in which all the functional blocks are 

available in a chip data memory I/O ports 

External memory microcontroller – in this microcontroller all functional blocks are not available 8031 doesn’t 

have any program memory 

CLASSIFICATION ACCORDING TO INSTRUCTION SET 

CISC – complex instruction set computer it allows the user to use one instruction to do the functions of many 

simple instructions 

RISC- reduced instruction set computer in this instruction set is reduced each instruction can be operated on any 

register or in any addressing mode 



Microprocessor and Microcontrollers 
 

CLASSIFICATION ACCORDING TO MEMORY ARCHITECTURE 

Harvard memory architecture- in this microcontroller the program and data memory doesn’t have a similar 

memory address space 

Princeton memory architecture- in this the program and data memory have similar address space 

TYPES OF MICROCONTROLLER 

8051 microcontroller 

It is designed by Intel in 1981 and it is an 8 bit microcontroller it has 40 pins dual inline package 128 bytes of 

RAM 4k byte of ROM in 8051 there are 2 busses one for programming and other for data programming in 

microcontroller is complicated basically we write a program in C language and then it is converted to machine 

language understood by microcontroller two types of memory is present the program memory and data memory 

program memory stores the data being executed while data memory stores the result temporarily 

Renesas microcontroller 

It is in the automotive microcontroller family that offers high-performance features with low power 

consumption this microcontroller offers high security and embedded safety character for the automotive 

applications RX microcontroller is an example which has 32 bit 

AVR microcontrollers 

The AVR microcontrollers have modified Harvard RISC architecture with separate memories for data and 

program and speed of AVR is really high when compared to PIC and 8051 

APPLICATIONS 

• Industrial automation 

• Communication application 

• Motor control applications 

• Test and measurement 

• Medical applications 

• Automobiles 

• Cameras 

• Security alarms 

• Mobile phones 

 

 



Microprocessor and Microcontrollers 
 

 

 

                   THE 8051 ARCHITECTURE 

Introduction 

Salient features of 8051 microcontroller are given below. 

• Eight bitCPU 

• On chip clockoscillator 

• 4Kbytes of internal program memory (code memory)[ROM] 

• 128 bytes of internal data memory[RAM] 

• 64 Kbytes of external program memory addressspace. 

• 64 Kbytes of external data memory addressspace. 

• 32 bi directional I/O lines (can be used as four 8 bit ports or 32 individually addressable I/O lines) 

• Two 16 Bit Timer/Counter :T0,T1 

• Full Duplex serial datareceiver/transmitter 

• Four Register banks with 8 registers in eachbank. 

• Sixteen bit Program counter (PC) and a data pointer(DPTR) 

• 8 Bit Program Status Word(PSW) 

• 8 Bit StackPointer 

• Five vector interrupt structure (RESET not considered as aninterrupt.) 

• 8051 CPU consists of 8 bit ALU with associated registers like accumulator ‘A’ , B register,PSW, SP, 16 

bit program counter, stackpointer. 



Microprocessor and Microcontrollers 
 

• ALU can perform arithmetic and logic functions on 8 bitvariables. 

• 8051 has 128 bytes of internal RAM which is dividedinto 

o Working registers [00 –1F] 

o Bit addressable memory area [20 –2F] 

o General purpose memory area (Scratch pad memory)[30-7F] 

 
 



Microprocessor and Microcontrollers 
 
 

 

 



Microprocessor and Microcontrollers 
 

 

 
 

 The 8051 architecture. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EA

LEPSE

N 

XTAL

1 

XTAL

2RES

ET 

 

 
VCC 

GND 

 

 

• 8051 has 4 K Bytes of internal ROM. The address space is from 0000 to 0FFFh. If the program 

size is more than 4 K Bytes 8051 will fetch the code automatically from external memory. 

• Accumulator is an 8 bit register widely used for all arithmetic and logical operations. 

A B 

PC 

 
Port 1 

SFR 

 
General 

Purpose 

RAM 

PSW ALU 

 
Port 0 

SFR and 

General Purpose RAM 

 
System 

Timing 

 
System 

interrupt 

timers 

 
Data 

buffers 

 
Memory 

control 

 
Port 3 

DPTR

DPH 

DPL 

ROM 

 
Port 2 

I/O 

INT 

CNTR 

SERIA

L 

RD/W

R 

I/O 

A8- 

A1

5 

I/O 

I/O 

A0-

A7 

D0-

D7 

 
General 

purpose 

area 

 
Bit addressible 

area 

Register Bank 3 

Register Bank 2 

Register Bank 1 

Register Bank 0 

 

IE 

IP 

PCON 

SBUF 

SCON 

TCON 

TMOD 

TL0 

TH0 

TL1 

TH1 

 



Microprocessor and Microcontrollers 
 

Accumulator is also used to transfer data between external memory. B register is used along with 

Accumulator for multiplication and division. A and B registers together is also called 

MATHregisters. 



Microprocessor and Microcontrollers 
 

• PSW (Program Status Word). This is an 8 bit register which contains the arithmetic status of 

ALU and the bank select bits of registerbanks. 

CY AC F0 RS1 RS0 OV - P 

CY - carryflag 

AC - auxiliary carryflag 

F0 - available to the user for general 

purpose RS1,RS0- register bank selectbits 

OV - overflow 

P - parity 

• Stack Pointer (SP) – it contains the address of the data item on the top of the stack. Stack may 

reside anywhere on the internal RAM. On reset, SP is initialized to 07 so that the default stack 

will start from address 08onwards. 

• Data Pointer (DPTR) – DPH (Data pointer higher byte), DPL (Data pointer lower byte). This is a 

16 bit register which is used to furnish address information for internal and externalprogram 

memory and for external datamemory. 

• Program Counter (PC) – 16 bit PC contains the address of next instruction to be executed. On 

reset PC will set to 0000. After fetching every instruction PC will increment byone. 

 

 PIN DIAGRAM 

Pinout Description 

Pins 1-8 PORT 1. Each of these pins can be configured as an input or an output. 

Pin 9 RESET. A logic one on this pin disables the microcontroller and clears the contents of 

most registers. In other words, the positive voltage on this pin resets the microcontroller. By 

applying logic zero to this pin, the program starts execution from the beginning. 

Pins10-17 PORT 3. Similar to port 1, each of these pins can serve as general input or output. Besides, 

all of them have alternative functions 



Microprocessor and Microcontrollers 
 

 

Pin 10 RXD. Serial asynchronous communication input or Serial synchronous communication 

output. 

Pin 11 TXD. Serial asynchronous communication output or Serial synchronous 

communication clockoutput. 

Pin 12 INT0.External Interrupt 0 input 

Pin 13 INT1. External Interrupt 1 input 

Pin 14 T0. Counter 0 clock input 

Pin 15 T1. Counter 1 clock input 

Pin 16 WR. Write to external (additional) RAM 

Pin 17 RD. Read from external RAM 

Pin 18, 19 XTAL2, XTAL1. Internal oscillator input and output. A quartz crystal which specifies 

operating frequency is usually connected to these pins. 

Pin 20 GND. Ground. 

Pin 21-28 Port 2. If there is no intention to use external memory then these port pins are configured as 

general inputs/outputs. In case external memory is used, the higher address byte, i.e. 

addresses A8-A15 will appear on this port. Even though memory with capacity of 64Kb is 

not used, which means that not all eight port bits are used for its addressing, the rest of them 

are not available asinputs/outputs. 

Pin 29 PSEN. If external ROM is used for storing program then a logic zero (0) appears on it every 

time the microcontroller reads a byte from memory. 

Pin 30 ALE. Prior to reading from external memory, the microcontroller puts the lower address 

byte (A0-A7) on P0 and activates the ALE output. After receiving signal from the ALE pin, 

the external latch latches the state of P0 and uses it as a memory chip address. Immediately 

after that, the ALE pin is returned its previous logic state and P0 is now used as a Data Bus. 

Pin 31 EA. By applying logic zero to this pin, P2 and P3 are used for data and address 

transmission with no regard to whether there is internal memory or not. It means that even 

there is a program written to the microcontroller, it will not be executed. Instead, the 

program written to external ROM will be executed. By applying logic one to the EA pin, 

the microcontroller will use both memories, first internal then external (if exists). 

Pin 32-39 PORT 0. Similar to P2, if external memory is not used, these pins can be used as general 

inputs/outputs. Otherwise, P0 is configured as address output (A0-A7) when the ALE pin is 

driven high (1) or as data output (Data Bus) when the ALE pin is driven low (0). 

Pin 40 VCC. +5V power supply. 



Microprocessor and Microcontrollers 
 

 MEMORYORGANIZATION 

Internal RAM organization 
 

 

 
 

2F 
 

2E 

 

2D 
 

2C 

 

2B 
 

2A 
 

29 
 

28 
 

27 

 

26 
 

25 
 

24 
 

23 

 

22 

21 
 

20 

 

 

 

 

Bit addressable memory 

 

7F 

7E 

. 

. 

. 

. 

. 

. 

. 

. 

32 

31 

30 

 

General purpose memory 

 

 

 

 

 

Working Registers 
 

Register Banks: 00h to 1Fh. The 8051 uses 8 general-purpose registers R0 through R7 (R0, 

R1,R2, R3, R4, R5, R6, and R7). There are four such register banks. Selection of register bank 

can be done through RS1,RS0 bits of PSW. On reset, the default Register Bank 0 will beselected. 

Bit Addressable RAM: 20h to 2Fh . The 8051 supports a special feature which allows access to 

bit variables. This is where individual memory bits in Internal RAM can be set or cleared. In all 

there are 128 bits numbered 00h to 7Fh. Being bit variables any one variable can have a value 0 

or 1. A bit variable can be set with a command such as SETB and cleared with a command such 

as CLR. Example instructions are: 

SETB25h;setsthebit25h(becomes1) 

CLR25h;clearsbit25h(becomes0) 

Note, bit 25h is actually bit 5 of Internal RAM location 24h. 

The Bit Addressable area of the RAM is just 16 bytes of Internal RAM located between 20h and 

2Fh. 

 
General Purpose RAM: 30h to 7Fh. Even if 80 bytes of Internal RAM memory are available 

B
A

N
K

0
 

B
A

N
K

1
 

B
A

N
K

2
 

B
A

N
K

3
 

R7 1F  
 
 
 
 
 

  

 
 
 
 
 
 

  

 
 
 
 
 
 

  

R6 1E 
R5 1D 

R4 1C 

R3 1B 
R2 1A 

R1 19 

R0 18 

R7 17 
R6 16 

R5 15 
R4 14 

R3 13 

R2 12 

R1 11 

R0 10 

R7 0F 
R6 0E 

R5 0D 

R4 0C 

R3 0B 
R2 0A 

R1 09 

R0 08 

R7 07 
R6 06 

R5 05 

R4 04 

R3 03 

R2 02 

R1 01 
R0 00 

 

7F       78 

77       70 

6F       68 

67       60 

5F       58 

57       50 

4F       48 

47       40 

3F       38 

37       30 

2F       28 

27       20 

1F       18 

17       10 

0F       08 

07       00 

 



Microprocessor and Microcontrollers 
 

for general-purpose data storage, user should take care while using the memory location from 00 

-2Fh 



Microprocessor and Microcontrollers 
 

since these locations are also the default register space, stack space, and bit addressable space. It 

is a good practice to use general purpose memory from 30 – 7Fh. The general purpose RAM can 

be accessed using direct or indirect addressingmodes. 

 

 EXTERNAL MEMORYINTERFACING 

Eg. Interfacing of 16 K Byte of RAM and 32 K Byte of EPROM to 

8051 
 

Number of address lines required for 16 Kbyte memory is 14 lines and that of 32Kbytes of memory is 15 

lines. 

The connections of external memory is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The lower order address and data bus are multiplexed. De-multiplexing is done by the latch. 

Initially the address will appear in the bus and this latched at the output of latch using ALE 

signal. The output of the latch is directly connected to the lower byte address lines of the 

memory. Later data will be available in this bus. Still the latch output is address it self. The 

higher byte of address bus is directly connected to the memory. The number of lines connected 

depends on the memory size. 

The RD and WR (both active low) signals are connected to RAM for reading and writing the data. 
 

PSEN of microcontroller is connected to the output enable of the ROM to read the data from the 

memory. 

EA (active low) pin is always grounded if we use only external memory. Otherwise, once the 

program size exceeds internal memory the microcontroller will automatically switch to external 

A13 

PSEN 
A14 

A13

A12 

A8 

A0-A7 A0-A7 

32 Kbyte 
. 

. RAM 

. 

A3 

A2 

A1 

A0 

LOWER BYTE 

ADDRESS 

GND [AD0 –AD7] DAT

A 

O/P 

DAT

A 

O/P 

DATA BUS [AD0 – AD7] 

.. 

A1 

A0 

16 Kbyte 

RAM 

WE

OE 

A7 

A12 

.. 

LE 

PSEN 
A14 

A13 

A12 

… 

A9 

A8 
WR 
RD 
AL 

8051 

 
EA 

 

 

 

 

 

AD0 

- 

AD7 



Microprocessor and Microcontrollers 
 

memory. 



Microprocessor and Microcontrollers 
 

 STACK 
A stack is a last in first out memory. In 8051 internal RAM space can be used as stack. The address of the 

stack is contained in a register called stack pointer. Instructions PUSH and POP are used for stack operations. 

When a data is to be placed on the stack, the stack pointer increments before storing the data on the stack so 

that the stack grows up as data is stored (pre-increment). As the data is retrieved from the stack the byte is 

read from the stack, and then SP decrements to point the next available byte of stored data (post decrement). 

The stack pointer is set to 07 when the 8051 resets. So that default stack memory starts from address location 

08 onwards (to avoid overwriting the default register bank ie., bank0). 

Eg; Show the stack and SP for the following. 
 

 

MOV R6, 

#25H MOV 

R1, #12H 
MOV R4, #0F3H 

[SP]=07 

[R6]=25H 

[R1]=12H 
[R4]=F3H 

//CONTENT OF SP IS 07 (DEFAULT VALUE) 

//CONTENT OF R6 IS25H 

//CONTENT OF R1 IS12H 

//CONTENT OF R4 ISF3H 

 
PUSH 6 

 
[SP]=08 

 
[08]=[06]=25H 

 
//CONTENT OF 08 IS 25H 

PUSH 1 [SP]=09 [09]=[01]=12H //CONTENT OF 09 IS 12H 

PUSH 4 [SP]=0A [0A]=[04]=F3H //CONTENT OF 0A IS F3H 

POP 6 
 

[06]=[0A]=F3H 
 

[SP]=09 //CONTENT OF 06 IS F3H 

POP 1 [01]=[09]=12H [SP]=08 //CONTENT OF 01 IS 12H 

POP 4 [04]=[08]=25H [SP]=07 //CONTENT OF 04 IS 25H 

 

 

 

I/O Ports: 
 
8051 microcontroller have 4 I/O ports each of 8-bit, which can be configured as input or output. Hence, total 32 I/O 
pins allows the microcontroller to be connected with the peripheral devices. 

1) PORT 0 

P0 can be used as a bidirectional I/O port or it can be used for address/data connected for accessing external memory. 

When control is 1 the port is used for address or data interfacing. When the control is 0 then the port can be used as a 

bidirectional I/O port. 

 



Microprocessor and Microcontrollers 
 

Fig: Structure of port 0 pin 

PORT 0 as an Input Port 

If the control is 0 then the port is used as an input port and 1 is written to the latch. In this type of situation both the 

output MOSFETs are off. Since the output pin has floats therefore, whatever data written on pin is directly read by 

read pin. 

PORT 0 as an Output Port 

If we want to write 1 on pin of P0, a '1' written to the latch which turns 'off' the lower FET while due to '0' control 

signal upper FET also turns off. 

Suppose we want to write '0' on pin of port 0, when '0' is written to the latch, the pin is pulled down by the lower 

FET. Hence the output becomes zero. 

2) PORT 1 

PORT 1 is dedicated only for I/O interfacing. When used as an output port, not needed to connect additional pull-up 

resistor like port 0. 

To use PORT 1 as an input port '1' has to be written to the latch. In this mode 1 is written to the pin by the external 

device then it read fine. 

 

Fig: Structure of port 1 pin 

3) PORT 2 

PORT 2 is used for higher external address byte or a normal I/O port. Here, the I/O operation is similar to PORT 1. 

Latch of PORT 2 remains stable when Port 2 pin are used for external memory access. 

 

Fig: Structure of port 2 pin 



Microprocessor and Microcontrollers 
 

4) PORT 3 

Following are the alternate functions of PORT 3: 

PORT 3 Pin Function Description 

P3.0 RXD Serial Input 

P3.1 TXD Serial Output 

P3.2 INT0 External Interrupt 0 

P3.3 INT1 External Interrupt 1 

P3.4 T0 Timer 0 

P3.5 T1 Timer 1 

P3.6 WR External Memory Write 

P3.7 RD External Memory Read 

It works as an I/O port same like port 2. Alternate functions of port 3 makes its architecture different than other ports. 

                                   

 

Fig: Structure of port 3 

 External Memory 

The system designer is not limited by the amount of internal RAM and ROM 

available on chip. Two separate external memory spaces are made available by 

the 16-bit PC and DPTR and by different control pins for enabling external ROM 

and RAM chips. Internal control circuitry accesses the correct physical memory, 

depending upon the machine cycle state and the op code being executed. 

There are several reasons for adding external memory, particularly program 

memory, when applying the 8051 in a system. When the project is in the 



Microprocessor and Microcontrollers 
 

prototype stage, the expense—in time and money—of having a masked internal 

ROM made for each program "try" is prohibitive.To alleviate this problem, the 

manufacturers make available an EPROM version, the 8751, which has 4K of on-

chip EPROM that may be programmed and erased as needed as the program is 

developed. The resulting circuit board layout will be identical to one that uses a 

factory-programmed 8051. The only drawbacks to the 8751 are the specialized 

EPROM programmers that must be used to program the non-standard 40-pin part, 

and the limit of "only" 4096 bytes of program code. The 8751 solution works 

well if the program will fit into 4K bytes. Unfortunately, many times, particularly 

if the program is written in a high-level language, the program size exceeds 4K 

bytes, and an external program memory is needed. Again, the manufacturers 

provide a version for the job, the ROMIess 8031. The EA pin is grounded when 

using the 8031, and all program code is contained in an external EPROM that 

may be as large as 64K bytes and that can be programmed using standard 

EPROM programmers. 



Microprocessor and Microcontrollers 
 

 
External RAM, which is accessed by the DPTR, may also be needed when 128 

bytes of internal data storage is not sufficient. External RAM, up to 64K bytes, 

may also be added to any chip in the 8051 family. 

 
Connecting External Memory 

Figure 2.8 shows the connections between an 8031 and an external memory 

configuration consisting of I6K bytes of EPROM and 8K bytes of static RAM. 

The 8051 accesses external RAM whenever certain program instructions are 

executed. External ROM is accessed whenever the EA (external access) pin is 

connected to ground or when the PC contains an address higher than the last 

address in the internal 4K bytes ROM (OFFFh). 8051 designs can thus use 

internal and external ROM automatically; the 8031, having no internal ROM, 

must have EA grounded. 

Figure 2.9 shows the timing associated with an external memory access cycle. 

During any memory access cycle, port 0 is time multiplexed. That is, it first 

provides the lower byte of the 16-bit memory address, then acts as a bidirectional 

data bus to write or read a byte of memory data. Port 2 provides the high byte of 

the memory address during the entire memory read/write cycle The lower address 

byte from port 0 must be latched into an external register to save the byte. 

Address byte save is accomplished by the ALE clock pulse that provides the 

correct timing for the '373 type data latch. The port 0 pins then become free to 

serve as a data bus. If the memory access is for a byte of program code in the 

ROM, the PSEN (program store enable) pin will go low to enable the ROM to 

place a byte of program code on the data bus. If the access is for a RAM byte, the 

WR (write) or RD (read) pins will go low, enabling data to flow between the 

RAM and the data bus. 

The ROM may be expanded to 64K by using a 27512 type EPROM and 

connecting the remaining port 2 upper address lines AI4-A15 to the chip. 

At this time the largest static RAMs available are 32K in size; RAM can be 



Microprocessor and Microcontrollers 
 

expanded to 64K by using two 32K RAMs that are connected through address 

A14 of port 2. 

The first 32K RAM (OOOOh-7FFFh) can then be enabled when AI5 of port 2 is    

low, and the second 32K RAM (SOOOh-FFFFh) when A15 is high, by using an 

inverter. 

Note that the WR and RD signals are alternate uses for port 3 pins 16 and 17. 

Also,port 0 is used for the lower address byte and data; port 2 is used for upper 

address bits. The use of external memory consumes many of the port pins, leaving 

only port 1 and parts of port 3 for general I/O. 



Microprocessor and Microcontrollers 
 



Microprocessor and Microcontrollers 
 



Microprocessor and Microcontrollers 
 

8051 INSTRUCTION SET 
 

 
 

8051 has about 111 instructions. These can be grouped into the following categories 

1. Data transfer instructions 

2. Arithmetic instructions 

3. Logical instructions 

4. Branch instructions 

5. Subroutine instructions 

6. Bit manipulation instructions 

The following nomenclatures for register, data, address and variables are used 

while write instructions 


A: Accumulator 

 
B: "B" register 

 
C: Carry bit 

 
Rn: Register R0 - R7 of the currently selected register bank 

 
Direct: 8-bit internal direct address for data. The data could be in lower 128bytes of 
RAM (00 - 7FH) or it could be in the special function register (80 - FFH). 

 
@Ri: 8-bit external or internal RAM address available in register R0 or R1. This is used 
for indirect addressing mode. 

 
#data8: Immediate 8-bit data available in the instruction. 

 
#data16: Immediate 16-bit data available in the instruction. 

 
Addr11: 11-bit destination address for short absolute jump. Used by instructions AJMP 
& ACALL. Jump range is 2 kbyte (one page). 

 
Addr16: 16-bit destination address for long call or long jump. 

 
Rel: 2's complement 8-bit offset (one - byte) used for short jump (SJMP) and all 
conditional jumps. 

 
bit: Directly addressed bit in internal RAM or SFR 
 
 
 

Data transferinstructions.  

In this group, the instructions perform data transfer operations of the following types. 



Microprocessor and Microcontrollers 
 

a. Move the contents of a register Rn toA 

i. MOVA,R2 

ii. MOVA,R7 

b. Move the contents of a register A toRn 

i. MOVR4,A 

ii. MOVR1,A 

c. Move an immediate 8 bit data to register A or to Rn or to a memory location(direct or 

indirect) 

i. MOV A,#45H 

ii. MOV R6,#51H 

iii. MOV 30H,#44H 

iv. MOV @R0, #0E8H 

v. MOV DPTR,#0F5A2H 

vi. MOV DPTR,#5467H 

d. Move the contents of a memory location to A or A to a memory location using directand 

indirectaddressing 

i. MOV A,65H 

ii. MOV 

A,@R0 

iii. MOV 45H,A 

iv. MOV @R1,A 

e. Move the contents of a memory location to Rn or Rn to a memory location using direct 

addressing 

i. MOV R3,65H 

ii. MOV 45H,R2 

f. Move the contents of memory location to anothermemory location using direct and 

indirectaddressing 

i. MOV 47H,65H 

ii. MOV 45H,@R0 

g. Move the contents of an external memory to A or A to an externalmemory 



Microprocessor and Microcontrollers 
 

i. MOVXA,@R1 

ii. MOVX@R0,A 

h. Move the contents of program memory toA 

i. MOVC A,@A+PC 

ii. MOVC A,@A+DPTR 

 

 

 

 

 

 
MOVXA,@DPTR 

iii. MOVX@DPTR,A 

 

Arithmeticinstructions.  
 

The 8051 can perform addition, subtraction. Multiplication and division operations on 8 bit 

numbers. 

 
Addition 

In this group, we have instructions to 
i. Add the contents of A with immediate data with or withoutcarry. 

i. ADD A,#45H 

ii. ADDC A,#OB4H 

ii. Add the contents of A with register Rn with or withoutcarry. 

i. ADD A,R5 

ii. ADDC A,R2 

iii. Add the contents of A with contents of memory with or without carry using direct and 

indirectaddressing 

i. ADD A, 51H 

ii. ADDC A, 75H 

iii. ADD A,@R1 

iv. ADDC A,@R0 

CY AC and OV flags will be affected by this 

operation. Subtraction 
In this group, we have instructions to 

i. Subtract the contents of A with immediate data with or withoutcarry. 



Microprocessor and Microcontrollers 
 

i. SUBB A,#45H 

ii. SUBB A,#OB4H 

ii. Subtract the contents of A with register Rn with or withoutcarry. 

i. SUBB A,R5 

ii. SUBB A,R2 

iii. Subtract the contents of A with contents of memory with or without carry using direct and 

indirectaddressing 

i. SUBB A,51H 

ii. SUBB A,75H 

iii. SUBB A,@R1 

iv. SUBB A,@R0 

 

CY AC and OV flags will be affected by this 

operation. Multiplication 

MUL AB. This instruction multiplies two 8 bit unsigned numbers which are stored in A and B 

register. After multiplication the lower byte of the result will be stored in accumulator and higher 

byte of result will be stored in B register. 
Eg. MOVA,#45H ;[A]=45H 

MOVB,#0F5H ;[B]=F5H 

MULAB ;[A]x[B]=45xF5=4209 

;[A]=09H, [B]=42H 

Division 
 
 
 

DIV AB. This instruction divides the 8 bit unsigned number which is stored in A by the 8 bit unsigned 

number which is stored in B register. After division the result will be stored in accumulator and 

remainder will be stored in B register. 
Eg. MOVA,#45H ;[A]=0E8H 

MOVB,#0F5H ;[B]=1BH 

DIVAB ;[A]/[B]=E8/1B=08Hwithremainder10H 

;[A] = 08H, [B]=10H 

 

DA A (Decimal Adjust After Addition). 

 

When two BCD numbers are added, the answer is a non-BCD number. To get the result in BCD, we use 

DA A instruction after the addition. DA A works asfollows. 

• If lower nibble is greater than 9 or auxiliary carry is 1, 6 is added to lowernibble. 

• If upper nibble is greater than 9 or carry is 1, 6 is added to uppernibble. 

 
Eg1: MOV A,#23H 

MOV R1,#55H 

ADDA,R1 //[A]=78 

DA A // [A]=78 nochangesintheaccumulatorafterdaa 

 

Eg2: MOV A,#53H 

MOV R1,#58H 

ADDA,R1 //[A]=ABh 

DA A //[A]=11,C=1.ANSWERIS111.AccumulatordataischangedafterDAA 

 



Microprocessor and Microcontrollers 
 

Increment: increments the operand by one. 

 
INC A INC Rn INC DIRECT INC @RiINCDPTR 

 

INC increments the value of source by 1. If the initial value of register is FFh, incrementing the value will 

cause it to reset to 0. The Carry Flag is not set when the value "rolls over" from 255 to 0. 

 

In the case of "INC DPTR", the value two-byte unsigned integer value of DPTR is incremented. If the initial 

value of DPTR is FFFFh, incrementing the value will cause it to reset to 0. 

 

Decrement: decrements the operand by one. 
 

DEC A DEC RnDEC DIRECT DEC@Ri 

 

DEC decrements the value of source by 1. If the initial value of is 0, decrementing the value will cause it to 

reset to FFh. The Carry Flag is not set when the value "rolls over" from 0 to FFh. 
 

LogicalInstructions  

 

Logical AND 

 

ANLdestination,source:ANL does a bitwise "AND" operation between sourceand destination, leaving the 

resulting value in destination. The value in source is not affected. "AND" instruction logically AND the 

bits of source anddestination. 
ANL A,#DATA ANL A, Rn 

ANL A,DIRECT ANL 

A,@Ri 

ANL DIRECT,A ANL DIRECT, #DATA 

 

Logical OR 

 

ORLdestination,source:ORLdoesabitwise"OR"operationbetweensourceanddestination, 



Microprocessor and Microcontrollers 
 

leaving the resulting value in destination. The value in source is not affected. " OR " instruction 

logically OR the bits of source and destination. 
ORL A,#DATA ORL A, Rn 

ORL A,DIRECT ORL 

A,@Ri 

ORL DIRECT,A ORL DIRECT, #DATA 

 

Logical Ex-OR 

 

XRLdestination,source: XRL does a bitwise "EX-OR" operation between source and 

destination,leavingtheresultingvalueindestination.Thevalueinsourceisnotaffected."XRL" instruction 

logically EX-OR the bits of source anddestination. 
XRLA,#DATA XRL A,Rn 

XRL A,DIRECT 

XRLA,@Ri 

XRL DIRECT,A XRL DIRECT, #DATA 

 

Logical NOT 

 

CPLcomplementsoperand,leavingtheresultinoperand.Ifoperandisasinglebitthenthestateof the bit will be 

reversed. If operand is the Accumulator then all the bits in the Accumulator will be reversed. 

 
CPL A, CPL C, CPL bit address 

 

SWAP A – Swap the upper nibble and lower nibble of A. 

Rotate Instructions 

RR A 

This instruction is rotate right the accumulator. Its operation is illustrated below. Each bit is shifted one 
location to the right, with bit 0 going to bit 7. 

 

 
RL A 

Rotate left the accumulator. Each bit is shifted one location to the left, with bit 7 going to bit 0 
 

 
RRC A 

Rotate right through the carry. Each bit is shifted one location to the right, with bit 0 going into the carry bit in the 

PSW, while the carry was at goes into bit 7 

 
RLC A 

Rotate left through the carry. Each bit is shifted one location to the left, with bit 7 going into the carry bit in the 

PSW, while the carry goes into bit 0. 



Microprocessor and Microcontrollers 
 

Branch (JUMP)Instructions  
 

Jump and Call Program Range 

There are 3 types of jump instructions. They are:- 
1. RelativeJump 

2. Short AbsoluteJump 

3. Long AbsoluteJump 

 
Relative Jump 

Jump that replaces the PC (program counter) content with a new address that is greater than (the 

address following the jump instruction by 127 or less) or less than (the address following the 

jump by 128 or less) is called a relative jump. Schematically, the relative jump can be shown as 

follows: - 

 

The advantages of the relative jump are as follows:- 

1. Only 1 byte of jump address needs to be specified in the 2's complement form, ie. For jumping 

ahead, the range is 0 to 127 and for jumping back, the range is -1 to-128. 

2. Specifying only one byte reduces the size of the instruction and speeds up program execution. 

3. The program with relative jumps can be relocated without reassembling to generate absolute 

jumpaddresses. 

 

Disadvantages of the absolute jump: - 

1. Short jump range (-128 to 127 from the instruction following the jump instruction) 

Instructions that use Relative Jump 

SJMP <relative address>; this is unconditional jump 

The remaining relative jumps are conditional jumps 

JC <relative address> 

JNC <relative address> 

JB bit, <relativeaddress> 

JNB bit, <relative address> 

JBC bit, <relative address> 

CJNE <destination byte>, <source byte>, <relative address> 

DJNZ <byte>, <relative address> 

JZ <relative address> 

JNZ <relative address> 

 
Short Absolute Jump 

In this case only 11bits of the absolute jump address are needed. The absolute jump address is 



Microprocessor and Microcontrollers 
 

calculated in the following manner. 



Microprocessor and Microcontrollers 
 

In 8051, 64 kbyte of program memory space is divided into 32 pages of 2 kbyte each. The 

hexadecimal addresses of the pages are given as follows:- 

Page(Hex) Address (Hex) 

00 0000-07FF 

01 0800 -0FFF 

02 1000-17FF 

03 1800 -1FFF 

. 

. 

1E F000 -F7FF 

1F F800 -FFFF 

 

It can be seen that the upper 5bits of the program counter (PC) hold the page number and the 

lower 11bits of the PC hold the address within that page. Thus, an absolute address is formed by 

taking page numbers of the instruction (from the program counter) following the jump and 

attaching the specified 11bits to it to form the 16-bit address. 

Advantage: The instruction length becomes 2 

bytes. Example of short absolute jump: - 
ACALL <address11> 
AJMP   <address11> 

 
LongAbsoluteJump/Call 

 

Applications that need to access the entire program memory from 0000H to FFFFH use long 

absolute jump. Since the absolute address has to be specified in the op-code, the instruction 

length is 3 bytes (except for JMP @ A+DPTR). This jump is notre-locatable. 

 

Example: - 

 
LCALL <address 16> 

LJMP <address 16> 

JMP @A+DPTR 

 

Another classification of jump instructions is 

1. UnconditionalJump 

2. ConditionalJump 

 

1. Theunconditionaljump is ajumpinwhichcontrol istransferredunconditionallytothetargetlocation. 

a. LJMP (long jump). This is a 3-byte instruction. First byte is the op-code and second and third bytes 

represent the 16-bit target address which is any memory location from 0000 toFFFFH 

eg: LJMP 3000H 

b. AJMP: this causes unconditional branch to the indicated address, by loading the 11 bit address to 0-

10bitsoftheprogramcounter.Thedestinationmustbethereforewithinthesame2Kblocks. 

c. SJMP (short jump). This is a 2-byte instruction. First byte is the op-code and second byte is the 

relative target address, 00 to FFH (forward +127 and backward -128 bytes from the current PC value). 

To calculate the target address of a short jump, the second byte is added to the PC value which is 

address of the instruction immediately below thejump. 



Microprocessor and Microcontrollers 
 

2. Conditional Jumpinstructions. 

JBC Jump if bit ＝1 and clearbit 
JNB  Jump if bit ＝0 

JB Jump if bit ＝1 

JNC Jump if CY ＝0 

JC Jump if CY ＝1 

CJNEreg,#data Jump if byte ≠ #data 

CJNEA,byte Jump if A ≠byte 

DJNZ Decrement and Jump if A ≠0 
JNZ Jump if A ≠0 

JZ Jump if A ＝0 

 

All conditional jumps are short jumps. 

 
Bit level jump instructions: 

 

Bit level JUMP instructions will check the conditions of the bit and if condition is true, it jumps to the 

address specified in the instruction. All the bit jumps are relative jumps. 

 

JBbit, rel ; jump if the direct bit is set to the relative address specified. 

JNBbit,rel ;jumpifthedirectbitiscleartotherelativeaddressspecified. 

JBCbit,rel ; jump if the direct bit is set to the relative address specified and then clear thebit. 

 

 

Subroutine CALL And RETURNInstructions  

 

Subroutines are handled by CALL and RET instructions There 

are two types of CALL instructions 

1. LCALL address(16bit) 

This is long call instruction which unconditionally calls the subroutine located at the indicated 16 bit 

address. This is a 3 byte instruction. The LCALL instruction works as follows. 

a. DuringexecutionofLCALL,[PC]=[PC]+3;(ifaddress whereLCALLresides issay,0x3254; during 

execution of this instruction [PC] = 3254h + 3h =3257h 

b. [SP]=[SP]+1; (if SP contains default value 07, then SP increments and[SP]=08 

c. [[SP]] = [PC7-0]; (lower byte of PC content ie., 57 will be stored in memory location08. 

d. [SP]=[SP]+1; (SP increments again and[SP]=09) 

e. [[SP]] = [PC15-8]; (higher byte of PC content ie., 32 will be stored in memory location09. 

With these the address (0x3254) which was in PC is stored in stack. 

f. [PC]=address(16 bit);thenewaddressofsubroutineisloadedto PC.No flagsareaffected. 

 

2. ACALL address(11bit) 

This is absolute call instruction which unconditionally calls the subroutine located at the indicated 11 bit 

address. This is a 2 byte instruction. The SCALL instruction works as follows. 

a. DuringexecutionofSCALL,[PC]=[PC]+2;(ifaddress whereLCALLresides issay,0x8549; during 

execution of this instruction [PC] = 8549h + 2h =854Bh 

b. [SP]=[SP]+1; (if SP contains default value 07, then SP increments and[SP]=08 

c. [[SP]] = [PC7-0]; (lower byte of PC content ie., 4B will be stored in memory location08. 

d. [SP]=[SP]+1; (SP increments again and[SP]=09) 

e. [[SP]] = [PC15-8]; (higher byte of PC content ie., 85 will be stored in memory location09. 
 

With these the address (0x854B) which was in PC is stored in stack. 



Microprocessor and Microcontrollers 
 

f. [PC10-0]= address(11bit); the new address of subroutine is loaded to PC. No flags are 
affected. 

 

RET instruction 
RET instruction pops top two contents from the stack and load it to PC. 

g. [PC15-8]=[[SP]];content of current top of the stack will be moved to higher byte ofPC. 

h. [SP]=[SP]-1; (SPdecrements) 

i. [PC7-0] = [[SP]] ;content of bottom of the stack will be moved to lower byte ofPC. 

j. [SP]=[SP]-1; (SP decrementsagain) 

 

 

Bit manipulationinstructions.  

 

8051 has 128 bit addressable memory. Bit addressable SFRs and bit addressable PORT pins. It is possible to perform 

following bit wise operations for these bit addressable locations. 

 

1. LOGICAL AND 

a. ANLC,BIT(BITADDRESS) ; ‘LOGICALLY AND’ CARRY AND CONTENT OF BIT ADDRESS, STORE RESULT INCARRY 

b. ANLC,/BIT; ; ‘LOGICALLY AND’ CARRY AND COMPLEMENT OF CONTENT OF BIT ADDRESS, STORE RESULT INCARRY 

 

2. LOGICALOR 

a. ORLC,BIT(BITADDRESS) ; ‘LOGICALLY OR’ CARRY AND CONTENT OF BIT ADDRESS, STORE RESULT INCARRY 

b. ORLC,/BIT; ; ‘LOGICALLY OR’ CARRY AND COMPLEMENT OF CONTENT OF BIT ADDRESS, STORE RESULT INCARRY 

3. CLRbit 

a. CLRbit ; CONTENT OF BIT ADDRESS SPECIFIED WILL BECLEARED. 

b. CLRC ; CONTENT OF CARRY WILL BECLEARED. 

4. CPLbit 

a. CPLbit ; CONTENT OF BIT ADDRESS SPECIFIED WILL BECOMPLEMENTED. 

b. CPLC ; CONTENT OF CARRY WILL BECOMPLEMENTEd 

 

ASSEMBLERDIRECTIVES 

 
Assembler directives tell the assembler to do something other than creating the machine code for 

an instruction. In assembly language programming, the assembler directives instruct the 

assembler to 
1. Process subsequent assembly languageinstructions 

2. Define program constants 

3. Reserve space forvariables 

 
The following are the widely used 8051 assembler directives. 

 
ORG (origin) 

The ORG directive is used to indicate the starting address. It can be used only when 

the program counter needs to be changed. The number that comes after ORG can be 

either in hex or in decimal. 

Eg:ORG 0000H ;Set PC to 0000



Microprocessor and Microcontrollers 
 

.EQU andSET 

EQU and SET directives assign numerical value or register name to the specified 

symbolname. 

EQU is used to define a constant without storing information in the memory. The symbol 

defined with EQU should not be redefined. 

SET directive allows redefinition of symbols at a later stage. 

DB (DEFINE BYTE) 

The DB directive is used to define an 8 bit data. DB directive initializes memory with 8 

bit values. The numbers can be in decimal, binary, hex or in ASCII formats. For decimal, 

the 'D' after the decimal number is optional, but for binary and hexadecimal, 'B' and ‘H’ 

are required. For ASCII, the number is written in quotation marks (‘LIKE This). 
 

DATA1: DB 40H ; hex 

DATA2: DB 01011100B ; b i n a r y 

DATA3: DB 48 ; decimal 

DATA4: DB  ' HELLO W’ ; ASCII 

     

 

  END 
The END directive signals the end of the assembly module. It indicates the end of the 
program to the assembler. Any text in the assembly file that appears after the END directive 
is ignored. If the END statement is missing, the assembler will generate an error. 

 
 

ADDRESSING MODES 

Various methods of accessing the data are called addressin g modes. 8051 addressing modes are 

classified as follows. 

1. Immediate addressing. 

2. Register addressing. 

3. Direct addressing. 

4. Indirect addressing. 

5. Relative addressing. 

6. Absolute addressing. 

7. Long addressing. 

8. Indexed addressing. 

9. Bit inherent addressing. 

10. Bit direct addressing. 

1.Immediate addressing. 
In this addressing mode the data is provided as a part of instruction itself. In other words 

data immediately follows the instruction. 

Eg. MOVA,#30H 

ADDA, #83 # Symbol indicates the data isimmediate 



Microprocessor and Microcontrollers 
 

 

2.Register addressing 
In this addressing mode the register will hold the data. One of the eight general registers 

(R0 to R7) can be used and specified as theoperand. 

Eg. MOV A,R0  

 ADDA,R6 

R0 – R7 will be selected from the current selection of register bank. The default register bank will 

be bank 0. 

3.Direct addressing 
There are two ways to access the internal memory. Using direct address and indirect 

address. Using direct addressing mode we can not only address the internal memory but SFRs 

also. In direct addressing, an 8 bit internal data memory address is specified as part of the 

instruction and hence, it can specify the address only in the range of 00H to FFH. In this 

addressing mode, data is obtained directly from the memory. 

Eg. MOV 

A,60h 

ADDA,30h 

4.Indirect addressing 

The indirect addressing mode uses a register to hold the actual address that will be used 

in data movement. Registers R0 and R1 and DPTR are the only registers that can be used as data 

pointers. Indirect addressing cannot be used to refer to SFR registers. Both R0 and R1 can hold 8 

bit address and DPTR can hold 16 bit address. 

Eg. MOV A,@R0  

 ADD A,@R1 

MOVXA,@DP

TR 

5. Indexed addressing 

In indexed addressing, either the program counter (PC), or the data pointer (DTPR)—is 

used to hold the base address, and the A is used to hold the offset address. Adding the value of 

the base address to the value of the offset address forms the effective address. Indexed 

addressing is used with JMP or MOVC instructions. Look up tables are easily implemented with 

the help of index addressing. 

Eg. MOVCA,@A+DPTR // copies the contents of memory location pointed by the sum of 

the accumulatorAandtheDPTRintoaccumulatorA. 

MOVCA,@A+PC //copies the contents of memory location pointed by the sum of the 

accumulator A and the program counter into accumulator A. 

6.Relative Addressing. 
Relative addressing is used only with conditional jump instructions. The relative address, 

(offset), is an 8 bit signed number, which is automatically added to the PC to make the address of 

the next instruction. The 8 bit signed offset value gives an address range of +127 to —128 



Microprocessor and Microcontrollers 
 

locations. The jump destination is usually specified using a label and the assembler calculates the 

jump offset accordingly. The advantage of relative addressing is that the program code is easy to 

relocate and the address is relative to position in the memory. 

Eg: SJMP LOOP1 

 JCBACK 

7. Absolute addressing 

Absolute addressing is used only by the AJMP (Absolute Jump) and ACALL (Absolute Call) 

instructions. These are 2 bytes instructions. The absolute addressing mode specifies the lowest 

11 bit of the memory. The upper 5 bit of the destination address are the upper 5 bit of the 

current program counter. Hence, absolute addressing allows branching only within the current 

2 Kbyte page of the program memory. 

Eg. AJMP LOOP1 

ACALL LOOP2 

 

8.Long Addressing 
The long addressing mode is used with the instructions LJMP and LCALL. These are 3 

byte instructions. The address specifies a full 16 bit destination address so that a jump or a 

call can be made to a location within a 64 Kbyte code memory space. 

Eg. LJMP FINISH 

LCALLDELAY 

 

9.Bit Inherent Addressing 
In this addressing, the address of the flag which contains the operand, is implied in the 

opcode of the instruction. 

Eg. CLRC  ; Clears the carry flag to0 

 

10.Bit Direct Addressing 
In this addressing mode the direct address of the bit is specified in the instruction. The RAM 

space 20H to 2FH and most of the special function registers are bit addressable. Bit address 

values are between 00H to 7FH. 

Eg. CLR 07h ; Clears the bit 7 of 20h RAM space 

SETB 07H ; Sets the bit 7of 20H RAM space



Microprocessor and Microcontrollers 
 

ASSEMBLY LANGUAGE PROGRAMS 

 
1. Write a program to add the values of locations 50H and 51H and store the result in locations in 

52h and 53H. 

 
ORG0000H ; Set program counter0000H 

MOVA,50H ; Load the contents of Memory location 50H into A ADD ADDA,51H 

; Add the contents of memory 51H with CONTENTSA 

MOV52H,A ; Save the LS byte of the result in 52H 

MOVA, #00 ; Load 00H intoA 

ADDCA,#00 ; Add the immediate data and carry toA 

MOV53H,A ; Save the MS byte of the result in location53h 

END 

 
2. Write a program to stored at a FFH into RAM memory locations 50H to 58H using direct 

addressing mode 

 
ORG0000H ; Set program counter0000H 

MOV A, #0FFH ; Load FFH intoA 

MOV50H,A ; Store contents of A in location50H 

MOV51H,A ; Store contents of A in location 5IH 

MOV52H,A ; Store contents of A in location52H 

MOV53H,A ; Store contents of A in location53H 

MOV54H,A ; Store contents of A in location54H 

MOV55H,A ; Store contents of A in location55H 

MOV56H,A ; Store contents of A in location56H 

MOV57H,A ; Store contents of A in location57H 

MOV58H,A ; Store contents of A in location58H 

END 

 
3. Write a program to subtract a 16 bit number stored at locations 51H-52H from 55H-56H and 

storetheresultinlocations40Hand41H.Assumethattheleastsignificantbyteofdataorthe result is stored 

in low address. If the result is positive, then store 00H, else store 01H in 42H. ORG0000H ; Set 

program counter0000H 

MOVA,55H ; Load the contents of memory location 55 intoA 

CLRC ; Clear the borrowflag 

SUBBA,51H ; Sub the contents of memory 51H from contents ofA 

MOV40H,A ; Save the LSByte of the result in location40H 

MOVA,56H ; Load the contents of memory location 56H intoA 

SUBBA,52H ; Subtract the content of memory 52H from the contentA 

MOV41H, ; Save the MSbyte of the result in location415. 

MOVA, #00 ; Load 005 intoA 

ADDCA,#00 ; Add the immediate data and the carry flag to A 

MOV42H,A ; If result is positive, store00H, else store 0lH in42H 

END 



Microprocessor and Microcontrollers 
 

4. Write a program to add two 16 bit numbers stored at locations 51H-52H and 55H-56H and store 

the result in locations 40H, 41H and 42H. Assume that the least significant byte of data and the 

result is stored in low address and the most significant byte of data or the result is stored in 

highaddress. 

 
ORG0000H ; Set program counter0000H 

MOVA,51H ; Load the contents of memory location 51H intoA 

ADDA,55H ; Add the contents of 55H with contents of A 

MOV40H,A ; Save the LS byte of the result in location 40H 

MOVA,52H ; Load the contents of 52H intoA 

ADDCA,56H ; Add the contents of 56H and CY flag withA 

MOV41H,A ; Save the second byte of the result in 41H 

MOVA,#00 ; Load 00H intoA 

ADDC A,#00 ; Add the immediate data 00H and CY to A 

MOV42H,A ; Save the MS byte of the result in location42H 

END 

 
5. Write a program to store data FFH into RAM memory locations 50H to 58H using indirect 

addressingmode. 

ORG0000H ; Set program counter0000H 

MOVA,#0FFH ; Load FFH intoA 

MOVRO,#50H ; Load pointer, R0-50H 

MOVR5,#08H ; Load counter,R5-08H 

Start:MOV@RO,A ; Copy contents of A to RAM pointed by R0 

INCRO ; Increment pointer 

DJNZ R5, start ; Repeat until R5 is zero 

END 

6. Write a program to add two Binary Coded Decimal (BCD) numbers stored at locations 60H and 

61H and store the result in BCD at memory locations 52H and 53H. Assume that the least 

significant byte of the result is stored in lowaddress. 

 
ORG0000H ; Set program counter00004 

MOVA,60H ; Load the contents of memory location 6.0.H intoA 

ADDA,61H ;Addthecontentsofmemorylocation61HwithcontentsofA DAA

 ; Decimal adjustment of the sum inA 

MOV52H,A ;Savetheleastsignificantbyteoftheresultinlocation52H 

MOVA,#00 ; Load 00H into.A 

ADDCA,#00H ;AddtheimmediatedataandthecontentsofcarryflagtoA 

MOV53H,A ; Save the most significant byte of the result in location 53:, 

END 

 
7. Writeaprogramtoclear10RAMlocationsstartingatRAMaddress1000H. 

 
ORG0000H  ;Set program counter 0000H 

MOVDPTR, #1000H ;Copy address 1000H toDPTR 

CLRA ;ClearA 

MOVR6,#0AH ;Load 0AH toR6 

again:MOVX@DPTR,A ;Clear RAM location pointed byDPTR 



Microprocessor and Microcontrollers 
 

INCDPTR ;IncrementDPTR 

DJNZR6,again ;Loop until counterR6=0 

END 

8. Write a program to compute 1 + 2 + 3 + N (say N=15) and save the sumat70H 

ORG0000H ; Set program counter0000H 

N EQU 15 

MOV R0,#00 ; ClearR0 

CLRA ; ClearA 

again:  INC R0 ; Increment R0 

ADDA,R0 ; Add the contents of R0 withA 

CJNE R 0,# N, again ; Loop until counter, R0,N 

MOV70H,A ; Save the result in location 70HEND 

9. Write a program to multiply two 8 bit numbers stored at locations 70H and 71H and store the 

resultatmemorylocations52Hand53H.Assumethattheleastsignificantbyteoftheresultis stored in 

lowaddress. 

ORG 0000H ; Set program counter 00 OH 

MOVA,70H;Loadthecontentsofmemorylocation70hintoA 

MOVB,71H;Loadthecontentsofmemorylocation71HintoB 

MULAB ; Performmultiplication 

MOV52H,A;Savetheleastsignificantbyteoftheresultinlocation52HMOV53H,B;Savethemost significant 

byte of the result inlocation 53 

END 

10. Ten 8 bit numbers are stored in internal data memory from location 5oH. Write a 

program to increment thedata. 

Assume that ten 8 bit numbers are stored in internal data memory from location 50H, hence R0 or R1 

must be used as a pointer. 

The program is as follows. 

OPT 0000H 

MOV R0,#50H 

MOV R3,#0AH 

Loopl: INC @R0 

INC RO 

DJNZ R3, loopl END 

END 

11. Write a program to find the average of five 8 bit numbers. Store the result in H. 

(Assume that after adding five 8 bit numbers, the result is 8 bitonly). 

ORG 0000H 

MOV 40H,#05H 

MOV 41H,#55H 

MOV 42H,#06H 

MOV 43H,#1AH 

MOV 44H,#09H 

MOV R0,#40H 

MOV R5,#05H 

MOV B,R5 

CLR A 

Loop: ADD A,@RO 

INC RO 



Microprocessor and Microcontrollers 
 

DJNZ R5,Loop 

DIV AB 

MOV55H,A  

END 

12. Write a program to find the cube of an 8bit number program is as follows 

ORG 0000H 

MOV 

R1,#N 

MOV A,R1 

MOVB,R1 

MULAB //SQUARE 

ISCOMPUTED MOV R2,B 

MOV B, R1 

MUL AB 

MOV 50,A 

MOV 51,B 

MOV A,R2 

MOV B, R1 

MUL AB 

ADD A, 51H 

MOV 51H, 

A MOV 52H, 

B 

MOVA,#00H 

ADDC 

A,52H 

MOV52H,A //CUBE IS STORED 

IN52H,51H,50H END 
 

13. Write a program to exchange the lower nibble of data present in external memory 6000H and 

6001H 

ORG0000H ;Setprogramcounter00h MOV 

DPTR, # 6000 H ; Copy address 6000 H toDPTR 

MOVXA,@DPTR ;Copycontentsof60008toA 

MOVR0,#45H ;Loadpointer,R0=45H 

MOV@RO,A ;CopycontofAtoRAMpointedby80 

INCDPL ;Increment  pointer 

MOVXA,@DPTR ;Copycontentsof60018toA 

XCHDA,@R0 ; E x c h a n g e l o w e r n i b b l e o f A w i t h R A M p o i n t e d b y RO 

MOVX@DPTR,A ;CopycontentsofAto60018 DECDPL

 ;Decrementpointer 

MOVA,@R0 ; Copycont of RAMpointed by R0 to A 
MOVX@DPTR,A ; Copy cont of A to RAMpointed by DPTR 

END 

 
14. Write a program to count the number of and o's of 8 bit data stored in location6000H. 

ORG00008  ; Set program counter 00008 

MOVDPTR,#6000h ; Copy address 6000H toDPTR 

MOVXA,@DPTR ; Copy num be r t o A 

MOVR0,#08 ;  Copy  08  inRO 

MOVR2,#00 ;  C o py 00 in R 2 

MOVR3,#00 ;  C o py 00 in R 3 



Microprocessor and Microcontrollers 
 

CLRC ; Clear carryflag 

BACK: RLCA ;  Athroughcarryf 

 

JCNEXT ; I f C F = 1 , b r a n c ht o n e x t 

INCR2 ; I f C F = 0 , i n c r e m e n t R 2AJMP 

NEXT2 NEXT: INCR3  ; I f C F = 1 , i n c r e m e n t R3 

NEXT2:DJNZRO,BACK ;RepeatuntilRO iszero END 

 

15. Write a program to shift a 24 bit number stored at 57H-55H to the left logically four places. 

Assume that the least significant byte of data is stored in loweraddress. 

ORG0000H ; Set program counter0000h 

MOVR1,#04 ; Set up loop count to4 

again:  MOVA,55H ; Place the least significant byte of data inA 

CLRC  ; Clear tne carryflag 

RLCA ; Rotate contents of A (55h) left throughcarry 

MOV55H,A 

MOVA,56H 

RLCA ; Rotate contents of A (56H) left throughcarry 

MOV56H,A 

MOVA,57H 

RLCA ; Rotate contentsofA (57H) left throughcarry 

MOV57H,A 

DJNZ R1,again ; Repeat until R1 is zero 

END 

 

16. Two 8 bit numbers are stored in location 1000h and 1001h of external data memory. 

Write a program to find the GCD of the numbers and store the result in 2000h. 
ALGORITHM 

• Step1 :Initialize external data memory with data and DPTR with address 
• Step2 :Load A and TEMP with the operands 

• Step3 :Are the two operands equal? If yes,go to step 9 

• Step4 :Is(A)greater than(TEMP)? If yes,go to step6 

• Step5 :Exchange (A )with(TEMP)such that A contains the bigger number 

• Step6 :Perform division operation(contents of A with contents of TEMP) 

• Step7 :If the remainder is zero,go to step9 
• Step8 :Move the remainder into A and go to step4 
• Step9 :Save the contents 'of TEMP in memory and term in at the program 

ORG0000H ; Set program counter 0000H 

TEMP EQU70H 

TEMPI EQU 71H 

MOVDPTR, #1000H ; Copy address 100011 toDPTR 

MOVXA,@DPTR ; Copy First number toA 

MOVTEMP,A ; Copy First number to temp INCDPTR 

MOVXA,@DPTR ; Copy Second number toA 

LOOPS: CJNE A, TEMP, LOOP1 ; (A) /= (TEMP) branch to LOOP1 

 
LOOP1: 

AJMP LOOP2 

JNC LOOP3 

; (A) = (TEMP) branch toL00P2 
; (A) > (TEMP) branch toLOOP3 

 NOV TEMPI, A ; (A) < (TEMP) exchange (A) with (TEMP) 
 MOV A, TEMP  

 MOV TEMP, TEMPI  

LOOP3: MOV B, TEMP  

 DIV AB ; Divide (A) by (TEMP) 
 MOV A, B ; Move remainder to A 
 CJNE A,#00, LOOPS ; (A)/=00 branch to LOOPS 

LOOP2: MOV A, TEMP  



Microprocessor and Microcontrollers 
 

 MOV DPTR, #2000H  

 MOVX @DPTR, A ; Store the result in 2000H 
 END  



Microprocessor and Microcontrollers 
 

UNIT-V 
 

8051 Real Time Control 

 

Timers of 8051 and their Associated Registers 

The 8051 has two timers, Timer 0 and Timer 1. They can be used as timers or as event counters. Both Timer 0 and 

Timer 1 are 16-bit wide. Since the 8051 follows an 8-bit architecture, each 16 bit is accessed as two separate 

registers of low-byte and high-byte. 

Timer 0 Register 

The 16-bit register of Timer 0 is accessed as low- and high-byte. The low-byte register is called TL0 (Timer 0 low 

byte) and the high-byte register is called TH0 (Timer 0 high byte). These registers can be accessed like any other 

register. For example, the instruction MOV TL0, #4H moves the value into the low-byte of Timer #0. 

 
Timer 1 Register 

The 16-bit register of Timer 1 is accessed as low- and high-byte. The low-byte register is called TL1 (Timer 1 low 

byte) and the high-byte register is called TH1 (Timer 1 high byte). These registers can be accessed like any other 

register. For example, the instruction MOV TL1, #4H moves the value into the low-byte of Timer 1. 

 
TMOD (Timer Mode) Register 

Both Timer 0 and Timer 1 use the same register to set the various timer operation modes. It is an 8-bit register in 

which the lower 4 bits are set aside for Timer 0 and the upper four bits for Timers. In each case, the lower 2 bits are 

used to set the timer mode in advance and the upper 2 bits are used to specify the location. 

 

Gate − When set, the timer only runs while INT(0,1) is high. 

C/T − Counter/Timer select bit. 



Microprocessor and Microcontrollers 
 

M1 − Mode bit 1. 

M0 − Mode bit 0. 

GATE 

Every timer has a means of starting and stopping. Some timers do this by software, some by hardware, and some 

have both software and hardware controls. 8051 timers have both software and hardware controls. The start and stop 

of a timer is controlled by software using the instruction SETB TR1 and CLR TR1 for timer 1, and SETB 

TR0 and CLR TR0 for timer 0. 

The SETB instruction is used to start it and it is stopped by the CLR instruction. These instructions start and stop the 

timers as long as GATE = 0 in the TMOD register. Timers can be started and stopped by an external source by 

making GATE = 1 in the TMOD register. 

C/T (CLOCK / TIMER) 

This bit in the TMOD register is used to decide whether a timer is used as a delay generator or an event manager. 

If C/T = 0, it is used as a timer for timer delay generation. The clock source to create the time delay is the crystal 

frequency of the 8051. If C/T = 0, the crystal frequency attached to the 8051 also decides the speed at which the 

8051 timer ticks at a regular interval. 

Timer frequency is always 1/12th of the frequency of the crystal attached to the 8051. Although various 8051 based 

systems have an XTAL frequency of 10 MHz to 40 MHz, we normally work with the XTAL frequency of 11.0592 

MHz. It is because the baud rate for serial communication of the 8051.XTAL = 11.0592 allows the 8051 system to 

communicate with the PC with no errors. 

M1 / M2 

M1 M2 Mode 

0 0 13-bit timer mode. 

0 1 16-bit timer mode. 

1 0 8-bit auto reload mode. 

1 1 Spilt mode. 

Different Modes of Timers 

Mode 0 (13-Bit Timer Mode) 

Both Timer 1 and Timer 0 in Mode 0 operate as 8-bit counters (with a divide-by-32 prescaler). Timer register is 

configured as a 13-bit register consisting of all the 8 bits of TH1 and the lower 5 bits of TL1. The upper 3 bits of TL1 

are indeterminate and should be ignored. Setting the run flag (TR1) does not clear the register. The timer interrupt 

flag TF1 is set when the count rolls over from all 1s to all 0s. Mode 0 operation is the same for Timer 0 as it is for 

Timer 1. 

Mode 1 (16-Bit Timer Mode) 

Timer mode "1" is a 16-bit timer and is a commonly used mode. It functions in the same way as 13-bit mode except 

that all 16 bits are used. TLx is incremented starting from 0 to a maximum 255. Once the value 255 is reached, TLx 

resets to 0 and then THx is incremented by 1. As being a full 16-bit timer, the timer may contain up to 65536 distinct 

values and it will overflow back to 0 after 65,536 machine cycles. 



Microprocessor and Microcontrollers 
 

 If a value, say YYXXH, is loaded into the Timer bytes, then the delay produced by the Timer will be equal to 

the product : 

[ ( FFFFH – YYXXH +1 ) x ( period of one timer clock ) ]. 

It can also be considered as follows: convert YYXXH into decimal, say NNNNN, then delay will be equal to the 

product : 

[ ( 65536-NNNNN ) x ( period of one timer clock ) ]. 

The period of one timer clock is 1.085 µs for a crystal of 11.0592 MHz frequency as discussed above. 

Now to produce a desired delay, divide the required delay by the Timer clock period. Assume that the division yields 

a number NNNNN. This is the number of times Timer must be updated before it stops. Subtract this number from 

65536 (binary equivalent of FFFFH) and convert the difference into hex. This will be the initial value to be loaded 

into the Timer to get the desired delay. 

 

Mode 2 (8 Bit Auto Reload) 

Both the timer registers are configured as 8-bit counters (TL1 and TL0) with automatic reload. Overflow from TL1 

(TL0) sets TF1 (TF0) and also reloads TL1 (TL0) with the contents of Th1 (TH0), which is preset by software. The 

reload leaves TH1 (TH0) unchanged. 

The benefit of auto-reload mode is that you can have the timer to always contain a value from 200 to 255. If you use 

mode 0 or 1, you would have to check in the code to see the overflow and, in that case, reset the timer to 200. In this 

case, precious instructions check the value and/or get reloaded. In mode 2, the microcontroller takes care of this. 

Once you have configured a timer in mode 2, you don't have to worry about checking to see if the timer has 

overflowed, nor do you have to worry about resetting the value because the microcontroller hardware will do it all 

for you. The auto-reload mode is used for establishing a common baud rate. 

Mode 3 (Split Timer Mode) 

Timer mode "3" is known as split-timer mode. When Timer 0 is placed in mode 3, it becomes two separate 8-bit 

timers. Timer 0 is TL0 and Timer 1 is TH0. Both the timers count from 0 to 255 and in case of overflow, reset back 

to 0. All the bits that are of Timer 1 will now be tied to TH0. 

When Timer 0 is in split mode, the real Timer 1 (i.e. TH1 and TL1) can be set in modes 0, 1 or 2, but it cannot be 

started/stopped as the bits that do that are now linked to TH0. The real timer 1 will be incremented with every 

machine cycle. 

Initializing a Timer 

Decide the timer mode. Consider a 16-bit timer that runs continuously, and is independent of any external pins. 

Initialize the TMOD SFR. Use the lowest 4 bits of TMOD and consider Timer 0. Keep the two bits, GATE 0 and 

C/T 0, as 0, since we want the timer to be independent of the external pins. As 16-bit mode is timer mode 1, clear 

T0M1 and set T0M0. Effectively, the only bit to turn on is bit 0 of TMOD. Now execute the following instruction − 

MOV TMOD,#01h 

Now, Timer 0 is in 16-bit timer mode, but the timer is not running. To start the timer in running mode, set the TR0 

bit by executing the following instruction − 

SETB TR0 

Now, Timer 0 will immediately start counting, being incremented once every machine cycle. 

Reading a Timer 

A 16-bit timer can be read in two ways. Either read the actual value of the timer as a 16-bit number, or you detect 

when the timer has overflowed. 



Microprocessor and Microcontrollers 
 

Sync          

 

Transmitter Receiver 

Transmitter Receiver 

Receiver Transmitter 

Transmitter Receiver 

Detecting Timer Overflow 

When a timer overflows from its highest value to 0, the microcontroller automatically sets the TFx bit in the TCON 

register. So instead of checking the exact value of the timer, the TFx bit can be checked. If TF0 is set, then Timer 0 

has overflowed; if TF1 is set, then Timer 1 has overflowed. 

 
 
Synchronous and Asynchronous serial communication: 
DATACOMMUNICATION 

The 8051 microcontroller is parallel device that transfers eight bits of data simultaneously over eight 

data lines to parallel I/O devices. Parallel data transfer over a long is very expensive. Hence, a serial 

communication is widely used in long distance communication. In serial data communication, 8-bit data is 

converted to serial bits using a parallel in serial out shift register and then it is transmitted over a single data 

line. The data byte is always transmitted with least significant bit first. 

BASICS OF SERIAL DATACOMMUNICATION 

 
Communication Links 

1. Simplex communication link:In simplex transmission,the line is dedicated for transmission. The 

transmitter sends and the receiver receives the data. 

 
 
2.Half duplex communication link:In half duplex,the communication link can be used for either transmission 
or   reception. Data is transmitted in only one direction at a time. 

 

 

   Receiver 

 

   Transmitter 
 

3.Full duplex communication link :If the data is transmitted in both ways at the same time,it is a full duplex i.e. transmission 

and reception can proceed simultaneously. This communication link requires two wires for data, one for transmission and one 

for reception. 

 

 

Types of Serial communication: 

Serial data communication uses two types of communication. 

1. Synchronous serial data communication:In this transmitter and receiver are synchronized. It uses a common 

clock to synchronize the receiver and the transmitter. First the synch character is sent and then the data is 

transmitted. This format is generally used for high speed transmission. In  

Data  

Receiver 

Transmitter 



Microprocessor and Microcontrollers 
 

 Start D0 D1 D2 D3 D4 D5 D6 D7 D8 Stop 

 
Transmitter Receiver 

 
Clock 

                                                                         

Synchronous serial data communication a block of data is transmitted at a time. 

 

Asynchronous Serial data transmission:In this,different clock sources are used for transmitter and receiver. In this 

mode, data is transmitted with start and stop bits. A transmission begins with start bit, followed by data and then 

stop bit. For error checking purpose parity bit is included just 

priortostopbit.InAsynchronousserialdatacommunicationasinglebyteis transmittedatatime. 

 Data  

Clock1 Clock2 

Baud rate: 

The rate at which the data is transmitted is called baud or transfer rate. The baud rate is the reciprocal of the 

time to send one bit. In asynchronous transmission, baud rate is not equal to number of bits per second. This 

is because; each byte is preceded by a start bit and followed by parity and stop bit. For example, in 

synchronous transmission, if data is transmitted with 9600 baud, it means that 9600 bits are transmitted in one 

second. For bit transmission time = 1 second/ 9600 = 0.104 ms. 

 

8051 SERIALCOMMUNICATION 
 

The 8051 supports a full duplex serial port. 

Three special function registers support serial communication. 

1. SBUF Register: Serial Buffer (SBUF) register is an 8-bit register. It has separate SBUF registers for data 

transmission and for data reception. For a byte of data to be transferred via the TXD line, it must be placed in 

SBUF register. Similarly, SBUF holds the 8-bit data received by the RXD pin and read to accept the 

receiveddata. 

2. SCON register: The contents of the Serial Control (SCON) register are shown below. Thisregister contains 

mode selection bits, serial port interrupt bit (TI and RI) and also the ninth data bit for transmission and 

reception (TB8 andRB8). 

 



Microprocessor and Microcontrollers 
 

                                                

3.PCON register: The SMOD bit (bit 7) of PCON register controls the baud rate in asynchronous mode transmission. 

 

 
 

SERIAL COMMUNICATION MODES 

Mode0 
In this mode serial port runs in synchronous mode. The data is transmitted and received through RXD pin and TXD 

is used for clock output. In this mode the baud rate is 1/12 of clock frequency. 

Mode 1 

In this mode SBUF becomes a 10 bit full duplex transceiver. The ten bits are 1 start bit, 8 data bit and 1 stop bit. 

The interrupt flag TI/RI will be set once transmission or reception is over. In this mode the baud rate is variable 

and is determined by the timer 1 overflow rate. 

                Baudrate = [2smod/32] x Timer 1 overflow Rate 

= [2smod/32] x [Oscillator Clock Frequency] / [12 x [256 –[TH1]]] 

Mode 2 

This is similar to mode 1 except 11 bits are transmitted or received. The 11 bits are, 1 start bit, 8 data bit, a 

programmable 9th data bit, 1 stop bit. 

Baudrate = [2smod/64] x Oscillator Clock Frequency 

Mode 3 

This is similar to mode 2 except baud rate is calculated as in mode 1 

 

CONNECTORS-232 
RS-232 standards: 



Microprocessor and Microcontrollers 
 

To allow compatibility among data communication equipment made by various manufactures, an interfacing 

standard called RS232 was set by the Electronics Industries Association (EIA) in 1960. Since the standard was set 

long before the advent of logic family, its input and output voltage levels are not TTL compatible. 

In RS232, a logic one (1) is represented by -3 to -25V and referred as MARK while logic zero 

(0) is represented by +3 to +25V and referred as SPACE. For this reason to connect any RS232 to a microcontroller 

system we must use voltage converters such as MAX232 to convert the TTL logic level to RS232 voltage levels 

and vice-versa. MAX232 IC chips are commonly referred as line drivers. 

In RS232 standard we use two types of connectors. DB9 connector or DB25 connector. 

 

DB9MaleConnector DB25MaleConnector 

  

The pin description of  DB9 and DB25 Connectors are as above 

The 8051 connection to MAX232 is as follows. 

The 8051 has two pins that are used specifically for transferring and receiving data serially. These two pins 

are called TXD, RXD. Pin 11 of the 8051 (P3.1) assigned to TXD and pin 10 (P3.0) is designated as RXD. 

These pins TTL compatible; therefore they require line driver (MAX 232) to make them RS232 compatible. 

MAX 232 converts RS232 voltage levels to TTL voltage levels and vice versa. One advantage of the 

MAX232 is that it uses a +5V power source which is the same as the source voltage for the 8051. The typical 

connection diagram between MAX 232 and 8051 is shown below. 

                                           
 

 

 

SERIAL COMMUNICATION  PROGRAMMING  IN ASSEMBLY  AND C. 
 

Steps to programming the 8051 to transfer data serially 
 1.The TMOD register is loaded with the value 20H, indicating the use of the Timer 1 in mode 2 (8-bit 

auto reload) to set the baudrate. 

2.The TH1 is loaded with one of the values in table 5.1 to set the baud rate for serial data transfer. 



Microprocessor and Microcontrollers 
 

3.The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-bit data is 

framed with start and stopbits. 

4.TR1 is set to 1 start timer1. 

 5.TI is cleared by the “CLR TI”instruction. 

 6.The character byte to be transferred serially is written into the SBUFregister. 

 7.The TI flag bit is monitored with the use of the instruction JNB TI, target to see if the character has 

been transferredcompletely. 

 8.To transfer the next character, go to step5. 

Example1.Write a program for the 8051 to transfer letter ‘A’ serially at 4800-baudrate,8bit data, 1 stop bit 

continuously. 
 

ORG 0000H LJMP 

START ORG 0030H 
START: MOVTMOD,#20H ; select timer 1 mode2 

MOVTH1,#0FAH ; load count to get baud rate of 4800 

MOVSCON,#50H ; initialize UART in mode2 

; 8 bit data and 1 stop bit 
SETBTR1 ; starttimer 
AGAIN: MOVSBUF,#'A' ; load char ‘A’ inSBUF 

BACK: JNB TI, BACK ; Check for transmit interrupt flag CLRTI

 ; Clear transmit interrupt flag SJMPAGAIN 
END 

 

Example2.Write a program for the 8051to transfer the message ‘EARTH’serially at 9600 baud,8 bit data, 1 

stop bit continuously. 

 

ORG 0000H LJMP 

START 

                      ORG 0030H 

START: MOVTMOD,#20H ; select timer 1 mode2 

MOVTH1,#0FDH ; load count to get reqd. baud rate of9600 

MOVSCON,#50H ; initialise uart in mode2 

; 8 bit data and 1 stopbit 

SETBTR1 ; starttimer 

LOOP: MOVA,#'E' ; load 1st letter ‘E’ in a ACALLLOAD

  ; call load subroutine MOVA, #'A'

 ; load 2nd letter ‘A’ in a ACALLLOAD

  ; call load subroutine MOVA,#'R'

 ; load 3rd letter ‘R’ in a ACALLLOAD

  ; call load subroutine MOVA,#'T'

 ; load 4th letter ‘T’ in a ACALLLOAD

  ; call load subroutine MOVA,#'H'

 ; load 4th letter ‘H’ in a ACALLLOAD

  ; call loadsubroutine 

SJMPLOOP ; repeatsteps 

 

LOAD: MOV SBUF, A 

HERE: JNB TI, HERE ; Check  for transmit interrupt flag CLRTI ; Clear 

transmit interrupt flag RET 
 

END 

 



Microprocessor and Microcontrollers 
 

 
 
Interrupts: 
 

An interrupt is a signal to the processor emitted by hardware or software indicating an event that needs immediate 

attention. Whenever an interrupt occurs, the controller completes the execution of the current instruction and starts 

the execution of an Interrupt Service Routine (ISR) or Interrupt Handler. ISR tells the processor or controller 

what to do when the interrupt occurs. The interrupts can be either hardware interrupts or software interrupts. 

Hardware Interrupt 

A hardware interrupt is an electronic alerting signal sent to the processor from an external device, like a disk 

controller or an external peripheral. For example, when we press a key on the keyboard or move the mouse, they 

trigger hardware interrupts which cause the processor to read the keystroke or mouse position. 

Software Interrupt 

A software interrupt is caused either by an exceptional condition or a special instruction in the instruction set which 

causes an interrupt when it is executed by the processor. For example, if the processor's arithmetic logic unit runs a 

command to divide a number by zero, to cause a divide-by-zero exception, thus causing the computer to abandon the 

calculation or display an error message. Software interrupt instructions work similar to subroutine calls. 

What is Polling? 

The state of continuous monitoring is known as polling. The microcontroller keeps checking the status of other 

devices; and while doing so, it does no other operation and consumes all its processing time for monitoring. This 

problem can be addressed by using interrupts. 

In the interrupt method, the controller responds only when an interruption occurs. Thus, the controller is not required 

to regularly monitor the status (flags, signals etc.) of interfaced and inbuilt devices. 

Interrupts v/s Polling 

Here is an analogy that differentiates an interrupt from polling − 

Interrupt Polling 

An interrupt is like a shopkeeper. 

If one needs a service or product, 

he goes to him and apprises him of 

his needs. In case of interrupts, 

when the flags or signals are 

received, they notify the controller 

that they need to be serviced. 

The polling method is like 

a salesperson. The salesman goes from 

door to door while requesting to buy a 

product or service. Similarly, the 

controller keeps monitoring the flags or 

signals one by one for all devices and 

provides service to whichever 

component that needs its service. 

Interrupt Service Routine 

For every interrupt, there must be an interrupt service routine (ISR), or interrupt handler. When an interrupt occurs, 

the microcontroller runs the interrupt service routine. For every interrupt, there is a fixed location in memory that 

holds the address of its interrupt service routine, ISR. The table of memory locations set aside to hold the addresses 

of ISRs is called as the Interrupt Vector Table. 



Microprocessor and Microcontrollers 
 

 

Interrupt Vector Table 

There are six interrupts including RESET in 8051. 

Interrupts ROM Location (Hex) Pin 

Serial COM (RI and TI) 0023 
 

Timer 1 interrupts(TF1) 001B 
 

External HW interrupt 1 (INT1) 0013 P3.3 (13) 

External HW interrupt 0 (INT0) 0003 P3.2 (12) 

Timer 0 (TF0) 000B 
 

Reset 0000 9 

• When the reset pin is activated, the 8051 jumps to the address location 0000. This is power-up reset. 

• Two interrupts are set aside for the timers: one for timer 0 and one for timer 1. Memory locations are 000BH 

and 001BH respectively in the interrupt vector table. 

• Two interrupts are set aside for hardware external interrupts. Pin no. 12 and Pin no. 13 in Port 3 are for the 

external hardware interrupts INT0 and INT1, respectively. Memory locations are 0003H and 0013H 

respectively in the interrupt vector table. 

• Serial communication has a single interrupt that belongs to both receive and transmit. Memory location 

0023H belongs to this interrupt. 



Microprocessor and Microcontrollers 
 

Steps to Execute an Interrupt 

When an interrupt gets active, the microcontroller goes through the following steps − 

• The microcontroller closes the currently executing instruction and saves the address of the next instruction 

(PC) on the stack. 

• It also saves the current status of all the interrupts internally (i.e., not on the stack). 

• It jumps to the memory location of the interrupt vector table that holds the address of the interrupts service 

routine. 

• The microcontroller gets the address of the ISR from the interrupt vector table and jumps to it. It starts to 

execute the interrupt service subroutine, which is RETI (return from interrupt). 

• Upon executing the RETI instruction, the microcontroller returns to the location where it was interrupted. 

First, it gets the program counter (PC) address from the stack by popping the top bytes of the stack into the 

PC. Then, it start to execute from that address. 

Edge Triggering vs. Level Triggering 

Interrupt modules are of two types − level-triggered or edge-triggered. 

Level Triggered Edge Triggered 

A level-triggered interrupt module 

always generates an interrupt 

whenever the level of the interrupt 

source is asserted. 

An edge-triggered interrupt module generates an 

interrupt only when it detects an asserting edge of 

the interrupt source. The edge gets detected when 

the interrupt source level actually changes. It can 

also be detected by periodic sampling and detecting 

an asserted level when the previous sample was de-

asserted. 

If the interrupt source is still asserted 

when the firmware interrupt handler 

handles the interrupt, the interrupt 

module will regenerate the interrupt, 

causing the interrupt handler to be 

invoked again. 

Edge-triggered interrupt modules can be acted 

immediately, no matter how the interrupt source 

behaves. 

Level-triggered interrupts are 

cumbersome for firmware. 

Edge-triggered interrupts keep the firmware's code 

complexity low, reduce the number of conditions for 

firmware, and provide more flexibility when 

interrupts are handled. 

Enabling and Disabling an Interrupt 

Upon Reset, all the interrupts are disabled even if they are activated. The interrupts must be enabled using software 

in order for the microcontroller to respond to those interrupts. 

IE (interrupt enable) register is responsible for enabling and disabling the interrupt. IE is a bitaddressable register. 

Interrupt Enable Register 



Microprocessor and Microcontrollers 
 

EA - ET2 ES ET1 EX1 ET0 EX0 

• EA − Global enable/disable. 

• - − Undefined. 

• ET2 − Enable Timer 2 interrupt. 

• ES − Enable Serial port interrupt. 

• ET1 − Enable Timer 1 interrupt. 

• EX1 − Enable External 1 interrupt. 

• ET0 − Enable Timer 0 interrupt. 

• EX0 − Enable External 0 interrupt. 

To enable an interrupt, we take the following steps − 

• Bit D7 of the IE register (EA) must be high to allow the rest of register to take effect. 

• If EA = 1, interrupts will be enabled and will be responded to, if their corresponding bits in IE are high. If EA 

= 0, no interrupts will respond, even if their associated pins in the IE register are high. 

Interrupt Priority in 8051 

We can alter the interrupt priority by assigning the higher priority to any one of the interrupts. This is accomplished 

by programming a register called IP (interrupt priority). 

The following figure shows the bits of IP register. Upon reset, the IP register contains all 0's. To give a higher 

priority to any of the interrupts, we make the corresponding bit in the IP register high. 

- - - - PT1 PX1 PT0 PX0 

- IP.7 Not Implemented. 

- IP.6 Not Implemented. 

- IP.5 Not Implemented. 

- IP.4 Not Implemented. 

PT1 IP.3 Defines the Timer 1 interrupt priority level. 

PX1 IP.2 Defines the External Interrupt 1 priority level. 

PT0 IP.1 Defines the Timer 0 interrupt priority level. 

PX0 IP.0 Defines the External Interrupt 0 priority level. 

Interrupt inside Interrupt 



Microprocessor and Microcontrollers 
 

What happens if the 8051 is executing an ISR that belongs to an interrupt and another one gets active? In such cases, 

a high-priority interrupt can interrupt a low-priority interrupt. This is known as interrupt inside interrupt. In 8051, 

a low-priority interrupt can be interrupted by a high-priority interrupt, but not by any another low-priority interrupt. 

Triggering an Interrupt by Software 

 

There are times when we need to test an ISR by way of simulation. This can be done with the simple 

instructions to set the interrupt high and thereby cause the 8051 to jump to the interrupt vector table. For 

example, set the IE bit as 1 for timer 1. An instruction  SETB TF1 will interrupt the 8051 in whatever it is 

doing and force it to jump to the interrupt vector table. 

 

 

 Interfacing with 8051 

 Interfacing LED with 8051 Microcontroller  

 

Light Emitting Diodes or LEDs are the mostly commonly used components in many applications. They are made of 

semiconducting material. In this, It describe about basics of Interfacing LED with 8051 Microcontroller.Principle 

behind Interfacing LED with 8051.The main principle of this circuit is to interface LEDs to the 8051 family micro controller. 

Commonly, used LEDs will have voltage drop of 1.7v and current of 10mA to glow at full intensity. This is applied through the 

output pin of the micro controller. 

 

In this circuit, LEDs are connected to the port P0.  The controller is connected with external crystal oscillator to pin 18 and 19 

pins. Crystal pins are connected to the ground through capacitors of 33pf. 

How to Control LEDs? 

Light Emitting Diodes are the semi conductor light sources. Commonly used LEDs will have a cut-off voltage of 1.7V and 

current of 10mA. When an LED is applied with its required voltage and current it glows with full intensity. 

The Light Emitting Diode is similar to the normal PN diode but it emits energy in the form of light. The color of light depends 

on the band gap of the semiconductor. The following figure shows “how an LED glows?” 

https://www.electronicshub.org/led-interfacing-8051/
https://www.electronicshub.org/led-interfacing-8051/


Microprocessor and Microcontrollers 
 

 

Thus, LED is connected to the AT89C51 microcontroller with the help of a current limiting resistor. The value of this resistor is 

calculated using the following formula. 

R= (V-1.7)/10mA, where V is the input voltage. 

Generally, microcontrollers output a maximum voltage of 5V. Thus, the value of resistor calculated for this is 330 Ohms. This 

resistor can be connected to either the cathode or the anode of the LED. 

Interfacing 16×2 LCD with 8051 

We use LCD display for the messages for more interactive way to operate the system or displaying error messages etc. 

interfacing LCD to microcontroller is very easy if you understanding the working of LCD 

LCD display is an inevitable part in almost all embedded projects and this article is about interfacing a 16×2 LCD with 8051 

microcontroller. Many guys find it hard to interface LCD module with the 8051 but the fact is that if you learn it properly, its a 

very easy job and by knowing it you can easily design embedded projects like digital voltmeter / ammeter, digital clock, home 

automation displays, status indicator display, digital code locks, digital speedometer/ odometer, display for music players etc 

etc. Thoroughly going through this article will make you able to display any text (including the extended characters) on any part 

of the 16×2 display screen. In order to understand the interfacing first you have to know about the 16×2 LCD module. 

16×2 LCD module: 

16×2 LCD module is a very common type of LCD module that is used in 8051 based embedded projects. It consists of 

16 rows and 2 columns of 5×7 or 5×8 LCD dot matrices. The module were are talking about here is type number JHD162A 

which is a very popular one . It is available in a 16 pin package with back light ,contrast adjustment function and each dot matrix 

has 5×8 dot resolution. The pin numbers, their name and corresponding functions are shown in the table  below. 

Pin No: Name  Function 

1 VSS This pin must be connected to the ground 

2 VCC  Positive supply voltage pin (5V DC) 

3 VEE Contrast adjustment 

4 RS Register selection 

http://www.circuitstoday.com/a-note-on-character-lcd-displays
http://www.circuitstoday.com/8051-microcontroller
http://www.circuitstoday.com/8051-microcontroller
http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-tachometer-using-8051


Microprocessor and Microcontrollers 
 

5 R/W Read or write 

6 E  Enable 

7 DB0  Data 

8 DB1  Data 

9 DB2  Data 

10 DB3  Data 

11 DB4  Data 

12 DB5  Data 

13 DB6  Data 

14 DB7  Data 

15 LED+  Back light LED+ 

16 LED-  Back light LED- 

VEE pin is meant for adjusting the contrast of the LCD display and the contrast can be adjusted by varying the voltage at this 

pin. This is done by connecting one end of a POT to the Vcc (5V), other end to the Ground and connecting the center terminal 

(wiper) of of the POT to the VEE pin. See the circuit diagram for better understanding. 

The JHD162A has two built in registers namely data register and command register.  Data register is for placing the data to be 

displayed , and the command register is to place the commands. The 16×2 LCD module has a set of commands each meant for 

doing a particular job with the display. We will discuss in detail about the commands later. High logic at the RS pin will select 

the data register and  Low logic at the RS pin will select the command register. If we make the RS pin high and the put a data in 

the 8 bit data line (DB0 to DB7) , the LCD module will recognize it as a data to be displayed .  If we make RS pin low and put a 

data on the data line, the module will recognize it as a command. 



Microprocessor and Microcontrollers 
 

R/W pin is meant for selecting between read and write modes. High level at this pin enables read mode and low level at this pin 

enables write mode. 

E pin is for enabling the module. A high to low transition at this pin will enable the module. 

DB0 to DB7 are the data pins. The data to be displayed and the command  instructions are  placed on these pins. 

LED+ is the anode of the back light LED and this pin must be connected to Vcc through a suitable series current limiting 

resistor. LED- is the cathode of the back light LED and this pin must be connected to ground. 

16×2 LCD module commands: 

16×2 LCD module has a set of preset command instructions. Each command will make the module to do a particular task. The 

commonly used commands and their function are given in  the  table below. 

Command                       Function 

0F LCD ON, Cursor ON, Cursor blinking 

ON 

01 Clear screen 

02 Return home 

04 Decrement cursor 

06 Increment cursor 

0E Display ON ,Cursor blinking OFF 

80 Force cursor to the beginning of  1st line 

C0 Force cursor to the beginning of 2nd line 

38 Use 2 lines and 5×7 matrix 



Microprocessor and Microcontrollers 
 

83 Cursor line 1 position 3 

3C Activate second line 

08 Display OFF, Cursor OFF 

C1 Jump to second line, position1 

OC Display ON, Cursor OFF 

C1 Jump to second line, position1 

C2 Jump to second line, position2 

LCD initialization: 

The steps that has to be done for initializing the LCD display is given below and these steps are common for almost all 

applications. 

• Send 38H to the 8 bit data line for initialization 

• Send 0FH for making LCD ON, cursor ON and cursor blinking ON. 

• Send 06H for incrementing cursor position. 

• Send 01H for clearing the display and return the cursor. 

Sending data to the LCD. 

The steps for sending data to the LCD module is given below. I have already said that the LCD module has pins namely RS, 

R/W and E. It is the logic state of these pins that make the module to determine whether a given data input  is a command or data 

to be displayed. 

• Make R/W low. 

• Make RS=0 if data byte is a command and make RS=1 if the data byte is a data to be displayed. 

• Place data byte on the data register. 

• Pulse E from high to low. 

• Repeat above steps for sending another data. 

 

 



Microprocessor and Microcontrollers 
 

 

Circuit diagram: 

 

The circuit diagram given above shows how to interface a 16×2 LCD module with AT89S1 microcontroller. 

Capacitor C3, resistor R3 and push button switch S1 forms the reset circuitry. Ceramic capacitors C1,C2 and crystal 

X1 is related to the clock circuitry which produces the system clock frequency. P1.0 to P1.7 pins of the 

microcontroller is connected to the DB0 to DB7 pins of the module respectively and through this route the data goes 

to the LCD module.  P3.3, P3.4 and P3.5 are connected to the E, R/W, RS pins of the microcontroller and through this 

route the control signals are transffered to the LCD module. Resistor R1 limits the current through the back light LED 

and so do the back light intensity. POT R2 is used for adjusting the contrast of the display. Program for interfacing 

LCD to 8051 microcontroller is shown below. 

Program: 

MOV A,#38H // Use 2 lines and 5x7 matrix 

ACALL CMND 

MOV A,#0FH // LCD ON, cursor ON, cursor blinking ON 

ACALL CMND 

MOV A,#01H //Clear screen 

ACALL CMND 

MOV A,#06H //Increment cursor 

ACALL CMND 

MOV A,#82H //Cursor line one , position 2 

ACALL CMND 

MOV A,#3CH //Activate second line 

ACALL CMND 

MOV A,#49D 

ACALL DISP 

MOV A,#54D 

ACALL DISP 

MOV A,#88D 

ACALL DISP 

MOV A,#50D 

ACALL DISP 

MOV A,#32D 

ACALL DISP 

MOV A,#76D 

ACALL DISP 

MOV A,#67D 



Microprocessor and Microcontrollers 
 

ACALL DISP 

MOV A,#68D 

ACALL DISP 

 

MOV A,#0C1H //Jump to second line, position 1 

ACALL CMND 

 

MOV A,#67D 

ACALL DISP 

MOV A,#73D 

ACALL DISP 

MOV A,#82D 

ACALL DISP 

MOV A,#67D 

ACALL DISP 

MOV A,#85D 

ACALL DISP 

MOV A,#73D 

ACALL DISP 

MOV A,#84D 

ACALL DISP 

MOV A,#83D 

ACALL DISP 

MOV A,#84D 

ACALL DISP 

MOV A,#79D 

ACALL DISP 

MOV A,#68D 

ACALL DISP 

MOV A,#65D 

ACALL DISP 

MOV A,#89D 

ACALL DISP 

 

HERE: SJMP HERE 

 

CMND: MOV P1,A 

CLR P3.5 

CLR P3.4 

SETB P3.3 

CLR P3.3 

ACALL DELY 

RET 

 

DISP:MOV P1,A 

SETB P3.5 

CLR P3.4 

SETB P3.3 

CLR P3.3 

ACALL DELY 

RET 

 

DELY: CLR P3.3 

CLR P3.5 

SETB P3.4 



Microprocessor and Microcontrollers 
 

MOV P1,#0FFh 

SETB P3.3 

MOV A,P1 

JB ACC.7,DELY 

 

CLR P3.3 

CLR P3.4 

RET 

 

END 

Subroutine CMND sets the logic of the RS, R/W, E pins of the LCD module so that the module recognizes the input data ( given 

to DB0 to DB7) as a command.Subroutine DISP sets the logic of the RS, R/W, E pins of the module so that the module 

recognizes the input data as a data to be displayed . 

Interfacing LCD Module to 8051 in 4 Bit Mode (using only 4 pins of a port) 

The microcontroller like 8051 has only limited number of  GPIO pins (GPIO – general purpose input output). So to design 

complex projects we need sufficient number of I/O pins . An LCD module can be interfaced with a microcontroller either in 8 

bit mode (as seen above) or in 4 bit mode. 8 bit mode is the conventional mode which uses 8 data lines and RS, R/W, E pins for 

functioning. However 4 bit mode uses only 4 data lines along with the control pins. This will saves the number of GPIO pins 

needed for other purpose.  

Objectives 

• Interface an LCD with 8051 in 4 bit mode 

• Use a single port of the microcontroller for both data and control lines of the LCD. 

 
LCD Module to 8051 – 4 Bit Mode 

As shown in the circuit diagram, port 0 of the controller is used for interfacing it with LCD module. In 4 bit mode only 4 lines 

D4-D7, along with RS, R/W and E pins are used. This will save us 4 pins of our controller which we might employ it for other 

purpose. Here we only need to write to the LCD module. So the R/W pin can be ground it as shown in the schematic diagram. In 

this way the total number of pins can be reduced to 6. In 4 Bit mode the data bytes are split into two four bits and are transferred 

in the form of  a nibble. The data transmission to a LCD is performed by assigning logic states to the control pins RS and E. The 

reset circuit, oscillator circuit and power supply need to be provided for the proper working of the circuit. 

Program – Interface LCD Module to 8051 – 4 Bit Mode 

RS EQU P0.4 

EN EQU P0.5 

PORT EQU P0 

http://www.circuitstoday.com/wp-content/uploads/2012/06/LCD_4bit.jpg


Microprocessor and Microcontrollers 
 

U EQU 30H 

L EQU 31H 

ORG 000H 

 

MOV DPTR,#INIT_COMMANDS 

ACALL LCD_CMD 

MOV DPTR,#LINE1 

ACALL LCD_CMD 

MOV DPTR,#TEXT1 

ACALL LCD_DISP 

MOV DPTR,#LINE2 

ACALL LCD_CMD 

MOV DPTR,#TEXT2 

ACALL LCD_DISP 

SJMP $ 

 

 

SPLITER: MOV L,A  

ANL L,#00FH  

SWAP A  

ANL A,#00FH  

MOV U,A  

RET 

 

MOVE: ANL PORT,#0F0H  

ORL PORT,A 

SETB EN  

ACALL DELAY  

CLR EN  

ACALL DELAY  

RET 

 

 

LCD_CMD: CLR A 

MOVC A,@A+DPTR 

JZ EXIT2 

INC DPTR  

CLR RS 

ACALL SPLITER 

MOV A,U 

ACALL MOVE 

MOV A,L 

ACALL MOVE 

SJMP LCD_CMD  

EXIT2: RET  

 

LCD_DATA: SETB RS 

ACALL SPLITER 

MOV A,U 

ACALL MOVE 

MOV A,L 

ACALL MOVE  

RET 

 

LCD_DISP: CLR A 



Microprocessor and Microcontrollers 
 

MOVC A,@A+DPTR 

JZ EXIT1 

INC DPTR  

ACALL LCD_DATA  

SJMP LCD_DISP  

EXIT1: RET  

 

DELAY: MOV R7, #10H 

L2: MOV R6,#0FH 

L1: DJNZ R6, L1 

DJNZ R7, L2 

RET 

 

INIT_COMMANDS: DB 20H,28H,0CH,01H,06H,80H,0  

LINE1: DB 01H,06H,06H,80H,0 

LINE2: DB 0C0H,0  

CLEAR: DB 01H,0 

 

TEXT1: DB " CircuitsToday ",0  

TEXT2: DB "4bit Using 1Port",0 

 

END 

Interfacing hex keypad to 8051 

Interfacing a hex key pad to 8051 microcontroller. A clear knowledge on interfacing hex key pad to 8051 is  very essential 

 while designing embedded system projects which requires character or numeric input or both. For example projects like digital 

code lock, numeric calculator etc. Before going to the interfacing in detail, let’s have a look at the hex keypad. 

Hex keypad 
Hex key pad is essentially a collection of 16 keys arranged in the form of a 4×4 matrix. Hex key pad usually have keys 

representing numerics 0 to 9 and characters A to F. The simplified diagram of a typical hex key pad is shown in the figure 

below. 

 
Hex keypad 

The hex keypad has 8 communication lines namely R1, R2, R3, R4, C1, C2, C3 and C4.  R1 to R4 represents the four rows and 

C1 to C4 represents the four columns. When a particular key is pressed the corresponding row and column to which the 

terminals of the key are connected gets shorted. For example if key 1 is pressed row R1 and column C1 gets shorted and so on. 

The program identifies which key is pressed by a method known as column scanning. In this method a particular row is kept low 

(other rows are kept high) and the columns are checked for low. If a particular column is found low then that means that the key 

connected between that column and the corresponding row (the row that is kept low) is been pressed. For example if  row R1 is 

initially kept low and column C1 is found low during scanning, that means key 1 is pressed. 

Interfacing hex keypad to 8051: 

http://www.circuitstoday.com/interfacing-hex-keypad-to-8051
http://www.circuitstoday.com/wp-content/uploads/2013/03/hex-keypad.png


Microprocessor and Microcontrollers 
 

The circuit diagram for demonstrating interfacing hex keypad to 8051 is shown below.Like previous 8051 projects, AT89S51 is 

the microcontroller used here. The circuit  will display the character/numeric pressed on a seven segment LED display. The 

circuit is very simple and it uses only two ports of the microcontroller, one for the hex keypad and the other for the seven 

segment LED display. 

 
Interfacing hex keypad to 8051 

 The hex keypad is interfaced to port 1 and seven segment LED display is interfaced to port 0 of the microcontroller. Resistors 

R1 to R8 limits the current through the corresponding segments of the LED display. Capacitors C1, C2 and crystal X1 completes 

the clock circuitry for the microcontroller. Capacitor C3, resistor R9 and push button switch S1 forms a debouncing reset 

mechanism. 

 

 
Program: 

ORG 00H 

MOV DPTR,#LUT // moves starting address of LUT to DPTR 

MOV A,#11111111B // loads A with all 1's 

MOV P0,#00000000B // initializes P0 as output port 

 

BACK:MOV P1,#11111111B // loads P1 with all 1's 

     CLR P1.0  // makes row 1 low 

     JB P1.4,NEXT1  // checks whether column 1 is low and jumps to NEXT1 if not low 

     MOV A,#0D   // loads a with 0D if column is low (that means key 1 is pressed) 

     ACALL DISPLAY  // calls DISPLAY subroutine 

NEXT1:JB P1.5,NEXT2 // checks whether column 2 is low and so on... 

      MOV A,#1D 

      ACALL DISPLAY 

NEXT2:JB P1.6,NEXT3 

      MOV A,#2D 

      ACALL DISPLAY 

NEXT3:JB P1.7,NEXT4 

      MOV A,#3D 

      ACALL DISPLAY 

NEXT4:SETB P1.0 

      CLR P1.1 

      JB P1.4,NEXT5 

      MOV A,#4D 

      ACALL DISPLAY 

http://www.circuitstoday.com/wp-content/uploads/2013/03/interfacing-hex-keypad-to-8051.png


Microprocessor and Microcontrollers 
 

NEXT5:JB P1.5,NEXT6 

      MOV A,#5D 

      ACALL DISPLAY 

NEXT6:JB P1.6,NEXT7 

      MOV A,#6D 

      ACALL DISPLAY 

NEXT7:JB P1.7,NEXT8 

      MOV A,#7D 

      ACALL DISPLAY 

NEXT8:SETB P1.1 

      CLR P1.2 

      JB P1.4,NEXT9 

      MOV A,#8D 

      ACALL DISPLAY 

NEXT9:JB P1.5,NEXT10 

      MOV A,#9D 

      ACALL DISPLAY 

NEXT10:JB P1.6,NEXT11 

       MOV A,#10D 

       ACALL DISPLAY 

NEXT11:JB P1.7,NEXT12 

       MOV A,#11D 

       ACALL DISPLAY 

NEXT12:SETB P1.2 

       CLR P1.3 

       JB P1.4,NEXT13 

       MOV A,#12D 

       ACALL DISPLAY 

NEXT13:JB P1.5,NEXT14 

       MOV A,#13D 

       ACALL DISPLAY 

NEXT14:JB P1.6,NEXT15 

       MOV A,#14D 

       ACALL DISPLAY 

NEXT15:JB P1.7,BACK 

       MOV A,#15D 

       ACALL DISPLAY 

       LJMP BACK 

 

DISPLAY:MOVC A,@A+DPTR // gets digit drive pattern for the current key from LUT 

        MOV P0,A       // puts corresponding digit drive pattern into P0 

        RET 

 

LUT: DB 01100000B // Look up table starts here 

     DB 11011010B 

     DB 11110010B 

     DB 11101110B 

     DB 01100110B 

     DB 10110110B 

     DB 10111110B 

     DB 00111110B 

     DB 11100000B 

     DB 11111110B 

     DB 11110110B 

     DB 10011100B 



Microprocessor and Microcontrollers 
 

     DB 10011110B 

     DB 11111100B 

     DB 10001110B 

     DB 01111010B 

     END 

About the program: 
Firstly the program initializes port 0 as an output port by writing all 0’s to it and port 1 as an input port by writing all 1’s to it. 

Then the program makes row 1 low by clearing P1.0 and scans the columns one by one for low using JB instruction.If column 

C1 is found low, that means 1 is pressed and accumulator is loaded by zero and DISPLAY subroutine is called. The display 

subroutine adds the content in A with the starting address of LUT stored in DPTR and loads A with the data to which the 

resultant address points (using instruction MOVC A,@A+DPTR). The present data in A will be the digit drive pattern for the 

current key press and this pattern is put to Port 0 for display. This way the program scans for each key one by one and puts it on 

the display if it is found to be pressed. 

Notes: 
• The 5V DC power supply must be well regulated and filtered. 

• Column scanning is not the only method to identify the key press. You can use row scanning also. In row scanning a particular 

column is kept low (other columns are kept high) and the rows are tested for low using a suitable branching instruction. If a 

particular row is observed low then that means that the key connected between that row and the corresponding column (the 

column that is  kept low) is been pressed. For example if  column C1 is initially kept low and row R1  is observed low during 

scanning, that means key 1 is pressed. 

• A membrane type hex keypad was used during the testing. Push button switch type and dome switch type will also work. I 

haven’t checked other types. 

• The display used was a common cathode seven segment LED display with type number ELK5613A. This is just for information 

and any general purpose common cathode 7 segment LED display will work here. 

 Interfacing Seven segment display to 8051 

Interface a seven segment LED display to an 8051 microcontroller. 7 segment LED display is  very popular and it can display 

digits from 0 to 9 and quite a few characters like A, b, C, ., H, E, e, F, n, o,t,u,y, etc. Knowledge about how to interface a seven 

segment display to a micro controller is very essential in designing embedded systems. A seven segment display consists of 

seven LEDs arranged in the form of a squarish ‘8’ slightly inclined to the right and a single LED as the dot character. Different 

characters can be displayed by selectively glowing the required LED segments. Seven segment displays are of two 

types, common cathode and common anode. In common cathode type , the cathode of all LEDs are tied together to a single 

terminal which is usually labeled as ‘com‘   and the anode of all LEDs are left alone as individual pins labeled as a, b, c, d, e, f, g 

&  h (or dot) . In common anode type, the anode of all LEDs are tied together as a single terminal and cathodes are left alone as 

individual pins. The pin out scheme and picture of a typical 7 segment LED display is shown in the image below. 

 
7 segment LED display 

Digit drive pattern: 

Digit drive pattern of a seven segment LED display is simply the different logic combinations of  its  terminals ‘a’ to ‘h‘ in order 

to display different digits and characters. The common digit drive patterns (0 to 9) of a seven segment display are shown in the 

table below. 

http://www.circuitstoday.com/interfacing-seven-segment-display-to-8051
http://www.circuitstoday.com/wp-content/uploads/2012/06/7-segment-LED-display-pinout-image.png


Microprocessor and Microcontrollers 
 

Digit a b c d e f g 

0 1 1 1 1 1 1 0 

1 0 1 1 0 0 0 0 

2 1 1 0 1 1 0 1 

3 1 1 1 1 0 0 1 

4 0 1 1 0 0 1 1 

5 1 0 1 1 0 1 1 

6 1 0 1 1 1 1 1 

7 1 1 1 0 0 0 0 

8 1 1 1 1 1 1 1 

9 1 1 1 1 0 1 1 

Interfacing seven segment display to 8051: 



Microprocessor and Microcontrollers 
 

 
Interfacing 7 segment display to 8051 

The circuit diagram shown above is of an AT89S51 microcontroller based 0 to 9 counter which has a 7 segment LED display 

interfaced to it in order to display the count.  This simple circuit illustrates two things. How to setup simple 0 to 9 up counter 

using 8051 and more importantly how to interface a seven segment LED display to  8051 in order to display a particular result. 

The common cathode seven segment display D1 is connected to the Port 1 of the microcontroller (AT89S51) as shown in the 

circuit diagram. R3 to R10 are current limiting resistors. S3 is the reset switch and R2,C3 forms a debouncing circuitry. C1, C2 

and X1 are related to the clock circuit. The software part of the project has to do the following tasks. 

• Form a 0 to 9 counter with a predetermined delay (around 1/2 second here). 

• Convert the current count into digit drive pattern. 

• Put the current digit drive pattern into a port for displaying. 

All the above said tasks are accomplished by the program given below. 

Program: 

ORG 000H //initial starting address 
START: MOV A,#00001001B // initial value of accumulator 
MOV B,A 
MOV R0,#0AH //Register R0 initialized as counter which counts from 10 to 0 
LABEL: MOV A,B 
INC A 
MOV B,A 
MOVC A,@A+PC // adds the byte in A to the program counters address 
MOV P1,A 
ACALL DELAY // calls the delay of the timer 
DEC R0//Counter R0 decremented by 1 
MOV A,R0 // R0 moved to accumulator to check if it is zero in next instruction. 
JZ START //Checks accumulator for zero and jumps to START. Done to check if counting 

has been finished. 
SJMP LABEL 
DB 3FH // digit drive pattern for 0 
DB 06H // digit drive pattern for 1 
DB 5BH // digit drive pattern for 2 
DB 4FH // digit drive pattern for 3 
DB 66H // digit drive pattern for 4 
DB 6DH // digit drive pattern for 5 
DB 7DH // digit drive pattern for 6 
DB 07H // digit drive pattern for 7 

http://www.circuitstoday.com/wp-content/uploads/2012/06/interfacing-7-segement-display-to-8051.png


Microprocessor and Microcontrollers 
 

DB 7FH // digit drive pattern for 8 
DB 6FH // digit drive pattern for 9 
DELAY: MOV R4,#05H // subroutine for delay 
WAIT1: MOV R3,#00H 
WAIT2: MOV R2,#00H 
WAIT3: DJNZ R2,WAIT3 
DJNZ R3,WAIT2 
DJNZ R4,WAIT1 
RET 
END 

About the program: 

Instruction MOVC A,@A+PC is the instruction that  produces the required digit drive pattern for the display. Execution of this 

instruction will add the value in the accumulator A with the content of the program counter(address of the next instruction) and 

will move the data present in the resultant address to A. After this the program resumes from the line after MOVC A,@A+PC. 

In the program,  initial value in A is 00001001B. Execution of  MOVC A,@A+PC  will add oooo1001B to the content  in PC ( 

address of next instruction). The result  will be the address of label DB 3FH (line15) and the data present in this address ie 3FH 

(digit drive pattern for 0) gets moved into the accumulator. Moving this pattern in the accumulator to Port 1 will display 0 which 

is the first count. 

At the next count, value in A will advance to 00001010 and after the execution of  MOVC A,@+PC  ,the value in A will be 06H 

which is the digit drive pattern for 1 and this will display 1 which is the next count  and this cycle gets repeated for subsequent 

counts. 

The reason why accumulator is loaded with 00001001B (9 in decimal) initially  is that the instructions from line 9 to line 15 

consumes 9 bytes in total. 

The lines 15 to 24 in the program which starts with label DB can be called as a Look Up Table (LUT). label DB is known as 

Define Byte – which defines a byte. This table defines the digit drive patterns for 7 segment display as bytes (in hex format). 

MOVC operator fetches the byte from this table based on the result of adding PC and contents in the accumulator. 

Register B is used as a temporary storage of the initial value of the accumulator and the subsequent increments made to 

accumulator to fetch each digit drive pattern one by one from the look up table(LUT). 

Note:- In line 6, Accumulator is incremented by 1 each time (each loop iteration) to select the next digit drive pattern. Since 

MOVC operator uses the value in A to fetch the digit drive pattern from LUT, value in ACC has to be incremented/manipulated 

accordingly. The digit drive patterns are arranged consecutively in LUT. 

Register R0 is used as a counter  which counts from 10 down to 0. This ensures that digits from o to 9 are continuously displayed 

in the 7 segment LED. You may note lines 4, 11, 12, and 13 in the above program. Line 4 initializes R0 to 10 (OAh). When the 

program counter reaches line 11 for the first time, 7 segment LED has already displayed 0. So we can reduce one count and that 

is why we have written DEC Ro. We need to continuously check if R0 has reached full count (that is 0). In order to do that lines 

12 and 13 are used. We move R0 to accumulator and then use the Jump if Zero (JZ) instruction to check if accumulator has 

reached zero. If Acc=0, then we makes the program to jump to START (initial state) and hence we restart the 7 segment LED to 

display from 0 to 9 again. If Acc not equal to zero, we continue the program to display the next digit (check line 14). 

Interfacing Stepper Motor with 8051 

 The stepper motors coil A,B,C,D is connected to the port 1 i.e. to P1.0, P1.2, P1.2 and P1.3. 

 

  The Microcontroller does not provide sufficient current to drive motor and to safeguard 8081 from loading effect and burn 

out condition, a motor driver IC ULN 2003 between 8051 and stepper motor. ULN 2003 is a stepper motor driver. 



Microprocessor and Microcontrollers 
 

 

  The stepper motor is user for controlling: 

 

1. Position control 

2. Direction control & 

3. Speed control 

 

 
 

Stepper motors are basically two types: Unipolar and Bipolar. Unipolar stepper motor generally has five or six wire, in which 

four wires are one end of four stator coils, and other end of the all four coils is tied together which represents fifth wire, this is 

called common wire (common point). Generally there are two common wire, formed by connecting one end of the two-two coils 

as shown in below figure. Unipolar stepper motor is very common and popular because of its ease of use. 

 
In Bipolar stepper motor there is just four wires coming out from two sets of coils, means there are no common wire. 

Stepper motor is made up of a stator and a rotator. Stator represents the four electromagnet coils which remain stationary around 

the rotator, and rotator represents permanent magnet which rotates. Whenever the coils energised by applying the current, the 

electromagnetic field is created, resulting the rotation of rotator (permanent magnet). Coils should be energised in a particular 

sequence to make the rotator rotate. On the basis of this “sequence” we can divide the working method of Unipolar stepper 

motor in three modes: Wave drive mode, full step drive mode and half step drive mode. 

 

4-Step sequence (Full Drive mode): 

 

  In this type of functioning, the following 4 binary sequence/code are used for rotation: (Considering step angle= 1.8 degrees) 



Microprocessor and Microcontrollers 
 

 
 

8-Step Sequence(Half Drive mode:): 

 

  In this type of functioning, the following 8 binary sequence/code are used for rotation: (Considering step angle= 0.9degrees) 

 
 

 

Program 



Microprocessor and Microcontrollers 
 

 
 

. 

     

Interfacing DC Motor with 8051 Microcontroller 

 

The main purpose of DC interfacing with 8051 microcontroller is for controlling the speed of the motor. The DC motor is an 

electrical machine with a rotating part termed as a rotor which has to be controlled. For example, consider the DC motor whose 

https://www.elprocus.com/wp-content/uploads/2015/06/Interfacing-DC-Motor-with-8051-Microcontroller.jpg


Microprocessor and Microcontrollers 
 

speed or direction of rotation of DC motor can be controlled using programming techniques which can be achieved 

by interfacing with 8051 microcontroller. So, in this article let us discuss about interfacing DC motor with 8051 microcontroller. 
 

Motor Driver IC used for Interfacing DC motor with 8051 

Here, interfacing 8051 with DC motor requires a motor driver. There are various types of driver ICs among which L293D is 

typically used for interfacing DC motor with 8051. L293 is an IC with 16 pins which are represented in the figure below. 

 

Motor Driver IC L293D used for Interfacing DC 

This L293 IC is having ratings of 600mA per channel and DC supply voltage in the range of 4.5V to 36V. 

These ICs can be protected from inductive spikes by connecting higher speed clamp diodes internally. 

This 16 pin L293D IC can be used for controlling the direction of two DC motors. The IC L293D works 

based on the H-bridge concept. The voltage can be made to flow in either direction using this circuit (H-

bridge) such that by changing the voltage direction the motor direction can be changed. 

 

Bi directional DC motor using 8051. 

This describes a bidirectional DC motor that changes its direction automatically after a preset amount of time  (around 1S). 

 AT89S51 is the microcontroller used here and L293 forms the motor driver. Circuit diagram is shown above 

In the circuit components R1, S1 and C3 forms a debouncing reset circuitry. C1, C2 and X1 are related to the oscillator. 

Port pins P1.0 and P1.1 are connected to the corresponding input pins of the L293 motor driver. The motor is connected across 

output pins 3 and 6 of the L293. The software is so written that the logic combinations of  P1.0 and P1.1 controls the direction of 

the motor. Initially when power is switched ON, P1.0 will be high and P1.1 will be low. This condition is maintained for a preset 

amount of time (around 1S) and for this time the motor will be running in the clockwise direction (refer the function table of 

https://www.elprocus.com/types-interfacing-devices-applications-with-microcontroller/
https://www.elprocus.com/h-bridge-motor-control-circuit-using-l293d-ic/
https://www.elprocus.com/h-bridge-motor-control-circuit-using-l293d-ic/
https://www.elprocus.com/wp-content/uploads/2015/06/Motor-Driver-IC-L293D-used-for-Interfacing-DC-motor-with-8051.jpg


Microprocessor and Microcontrollers 
 

L293). Then the logic of P1.0 and P1.1 are swapped and this condition is also maintained for the same duration . This makes the 

 motor to run  in the anti clockwise direction for the same duration and the entire cycle is repeated. 

Program: 
ORG 00H // initial starting address 
MAIN: MOV P1,#00000001B // motor runs clockwise 
ACALL DELAY // calls the 1S DELAY 
MOV P1,#00000010B // motor runs anti clockwise 
ACALL DELAY // calls the 1S DELAY 
SJMP MAIN // jumps to label MAIN for repaeting the cycle 
DELAY: MOV R4,#0FH 
WAIT1: MOV R3,#00H 
WAIT2: MOV R2,#00H 
WAIT3: DJNZ R2,WAIT3 
DJNZ R3,WAIT2 
DJNZ R4,WAIT1 
RET 
END 

 

Notes: 
The maximum current capacity of L293 is 600mA/channel. So do not use a motor that consumes more than that. 

The supply voltage range of L293 is between 4.5 and 36V DC. So you can use a motor falling in that range. 

 

 

Interfacing ADC with 8051: 

 

ADC 0808: 

The ADC used in the interfacing is ADC 0808.It is successive approximation 8-bit ADC. It has 28 pins, and can 

handle upto 8 analog signals using one chip. It has got an 8-bit data output. The 8 input channels are IN0-IN7, and 

Vref(+)=5V; Vref(-) has been grounded. In order to select the inputs IN0-IN7; A, B and C addresses are used. 

                                                 
ADC receives analog signal from the source. This analog signal is received from one of the 8 input channels of 

ADC0808. Then this signal is processed accordingly and converted to corresponding digital signal. This signal is then 

sent to the microcontroller and the output is displayed using Light Emitting Diode (LED) 

                              
ALGORITHM FOR PROGRAMMING ADC 

 i) An analog channel is selected by giving bits to A, B, C addresses. 

 ii) ALE(Address Latch Enable) is activated by a low to high pulse in order to latch in the address. 

 iii) SC(Start Conversion) is activated by a low to high pulse in order to start the conversion.  



Microprocessor and Microcontrollers 
 

iv) If a high to low output is obtained at EOC(End of Conversion), it indicates that the data conversion is finished and 

the data is ready.  

v) OE(Output Enable) is activated to read output data from the ADC chip. In order to bring the digital data out of the 

chip a low to high pulse is is given to the OE pin. 

ASSEMBLY PROGRAM TO INTERFACE ADC WITH 8051  

ORG 000AH  

SJMP MAIN  

ADC_DATA EQU P1 ;Give Name To Port Pins 

 ADC_SC BIT P3.0 

 ADC_EOC BIT P3.1 ADC 8051 microcontroller LED 9 

 ADC_ALE BIT P3.2 

 ADC_OE BIT P3.3  

ADD_A BIT P3.4 

 ADD_B BIT P3.5 

 ADD_C BIT P3.6 

 MAIN: MOV ADC_DATA,#0FFH ;Port 1 is input port 

 SETB ADD_A ;select channel 

 SETB ADD_B  

CLR ADD_C ;for channel 3 selection  

ACALL DELAY1  

ACALL ADC_COUNT  

MOV P0,A ; 

ADC Programming Start  

ADC_COUNT: SETB ADC_EOC ;it is made as input Port 

 CLR ADC_ALE  

CLR ADC_SC  

CLR ADC_OE 

 BACK:  SETB ADC_ALE ;High To Low Pulse is given to ALE  

ACALL DELAY1 

 SETB ADC_SC ;High To Low Pulse is given to SC 

 ACALL DELAY1 

 CLR ADC_ALE 

 CLR ADC_SC 

 LOOP1: JB ADC_EOC,LOOP1 ;Wait for conversion to finish  

LOOP2: JNB ADC_EOC,LOOP2 ;Output becomes high  

SETB ADC_OE ;Set OE High to covert data on controller  

ACALL DELAY1 ;For Further delay 

 CLR ADC_OE ;digital converted data is saved in memory 

 MOV B,#05H DIV AB ;amplify with gain in place of 05H for obtaining real digital data 

 RET ;Return To Main Routine Delay ; 

App. 1.3643 Sec. Delay 

 DELAY: MOV R3,#3  

 LOOP3: MOV R1,#254  

LOOP4: MOV R2,#254 

 LOOP5: DJNZ R2,LOOP5 

 DJNZ R1,LOOP4  

DJNZ R3,LOOP3 

 RET ;Approximately 435 µsec 

 DELAY1: MOV R3,#1  

LOOP6: MOV R1,#10 

 LOOP7: MOV R2,#10  



Microprocessor and Microcontrollers 
 

LOOP8: DJNZ R2,LOOP8 

  DJNZ R1,LOOP7 

 DJNZ R3,LOOP6  

 RET  

END 

 Interfacing DAC to 8051: 

The digital to analog converter is a device widely used to convert digital pulses to analog signals. The two 

methods of creating DAC are binary weighted and R-2R ladder. DAC 0808 uses the R-2R method since it can 

achieve a high degree of precision. The first criterion for judging a DAC is its resolution, which is the function of 

the number of binary inputs. The common ones are 8, 10 and 12 bits. The number of data bit inputs decides the 

resolution of the DAC since the number of analog output levels is equal to 2n, where n is the number of data 

inputs. DAC 0808 provides 256 discrete voltage or current levels of output. In DAC 0808, the digital inputs are 

converted into current Iout and by connecting a resistor to Iout pin, we convert the result to voltage. The total 

current provided by IOUT pin is a function of binary numbers at the D0-D7 pins inputs to DAC 0808 and 

reference current (Iref) is as follows: Iout=Iref (D7/2+D6/4+D5/8+D4/16+D3/32...+D0/256) Where D0 is the 

LSB, D7 is the MSB for the inputs and Iref is the input current that must be applied. 

Algorithm for interface 8051 with DAC: 

 Step1: Connect the P1 of 8051 with D0-D7 pins of DAC  

Step2: Give +5v to VCC & Vref of DAC  

Step3: Connect -12v to VEE of DAC 

 Step4: Connect OPAMP to OUT pin of the DAC With 5K resistor  

Step5: Connect the oscilloscope to the OPAMP to View the output 

Digital to Analog converters are required when a digital code must be converted to analog signal. It has eight 

digital input lines and an output line for analog signal. The number of data bits reduces resolution of DAC. 

Outputting digital data 00 to FF at regular intervals to DAC, results in generation of different waveforms 

namely square wave, triangular wave, sine wave etc. 

 

                                                      
      Interfacing diagram of DAC to 8051 

 

 



Microprocessor and Microcontrollers 
 

 

 

 

 

 

 


